\(cos^2x-3sinx.cosx+2sin^2x=0\) trên \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 10 2020

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(2tan^2x-3tanx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(\frac{1}{2}\right)+k\pi\end{matrix}\right.\)

Pt có 8 nghiệm trên đoạn đã cho (ứng với các giá trị \(k=\left\{-2;-1;0;1\right\}\))

24 tháng 6 2019

\(\cos5x=-\sin4x\)

<=> \(\cos5x=\cos\left(4x+\frac{\pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}5x=4x+\frac{\pi}{2}+k2\pi\\5x=-4x-\frac{\pi}{2}+k2\pi\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}}\)

Nghiệm âm lớn nhất: \(-\frac{\pi}{18}\)

Nghiệm dương  nhỏ nhất: \(\frac{\pi}{2}\)

24 tháng 6 2019

pt <=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x-\frac{\pi}{3}+\frac{\pi}{2}\right)\)

<=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x+\frac{\pi}{6}\right)\)

<=> \(\orbr{\begin{cases}5x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\5x+\frac{\pi}{3}=\pi-2x-\frac{\pi}{6}+k2\pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\end{cases}}\)

Trên \(\left[0,\pi\right]\)có các nghiệm:

\(\frac{11\pi}{18},\frac{\pi}{14},\frac{5\pi}{14},\frac{9\pi}{14},\frac{13\pi}{14}\)

tính tổng:...

NV
20 tháng 9 2020

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

NV
20 tháng 9 2020

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

27 tháng 9 2020

Câu 1 với câu 2 sai đề, sin và cos nằm trong [-1;1], mà căn 2 với căn 3 lớn hơn 1 rồi

3/ \(\sin x=\cos2x=\sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2x+k2\pi\\x=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\frac{2}{3}\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

4/ \(\Leftrightarrow\cos^2x-2\sin x\cos x=0\)

Xét \(\cos x=0\) là nghiệm của pt \(\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(\cos x\ne0\Rightarrow1-2\tan x=0\Leftrightarrow\tan x=\frac{1}{2}\Rightarrow x=...\)

5/ \(\Leftrightarrow\sin\left(2x+1\right)=-\cos\left(3x-1\right)=\cos\left(\pi-3x+1\right)=\sin\left(\frac{\pi}{2}-\pi+3x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\frac{\pi}{2}-\pi+3x-1\\2x+1=\pi-\frac{\pi}{2}+\pi-3x+1\end{matrix}\right.\Leftrightarrow....\)

6/ \(\Leftrightarrow\cos\left(\pi\left(x-\frac{1}{3}\right)\right)=\frac{1}{2}\Leftrightarrow\pi\left(x-\frac{1}{3}\right)=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{1}{3}+2k\Rightarrow x=\frac{2}{3}+2k\left(1\right)\\x-\frac{1}{3}=-\frac{1}{3}+2k\Rightarrow x=2k\left(2\right)\end{matrix}\right.\)

\(\left(1\right):-\pi< x< \pi\Rightarrow-\pi< \frac{2}{3}+2k< \pi\) (Ủa đề bài sai hay sao ý nhỉ?)

7/ \(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x+\frac{\pi}{3}\\5x+\frac{\pi}{3}=\pi-\frac{\pi}{2}+2x-\frac{\pi}{3}\end{matrix}\right.\Leftrightarrow...\)

Thui, để đây bao giờ...hết lười thì làm tiếp :(

27 tháng 9 2020

7)

\(sin\left(5x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x-\frac{\pi}{3}+k2\pi\\5x+\frac{\pi}{3}=\pi-\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{42}+k\frac{2\pi}{7}\\x=\frac{\pi}{6}+k\frac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

Do:\(0< x< \pi\)

\(Với:x=\frac{-\pi}{42}+k\frac{2\pi}{7}\left(k\in Z\right)\Rightarrow khôngtìmđượck\)

\(Với:x=\frac{\pi}{6}+k\frac{2\pi}{3}\left(k\in Z\right)\Leftrightarrow\frac{1}{4}< k< \frac{5}{4}\Rightarrow k=\left\{0;1\right\}\Rightarrow\left[{}\begin{matrix}k=0\Rightarrow x=\frac{\pi}{6}\\k=1\Rightarrow x=\frac{5\pi}{6}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=\frac{\pi}{6};x=\frac{5\pi}{6}\)

29 tháng 8 2019

3) 2sin^2 x - 3sinx + 1 = 0

Đặt t = sin x

(*) <=> 2t^2 - 3t + 1 = 0

<=> t = 1 (nhận) or t = 1/2 (nhận)

.Vs t = 1 => sinx = 1

<=> x = π/2 + k2π (k thuộc Z) (nhận)

.Vs t = 1/2 => sinx = 1/2

<=> sinx = sin π/6

<=> x = π/6 + k2π (k thuộc Z) (nhận)

Vậy ...

2) cos^2 x + cosx = 0

Đặt t = cosx

(*) <=> t^2 + t =0 <=> t = 0 (n) or t = -1 (n)

. Vs t = 0 => cosx = 0 <=> x = π/2 + kπ (loại)

.Vs t = -1 => cosx = -1 <=> x = π + k2π (nhận)

Vậy ...

1) (sin3x)/cosx + 1 = 0

ĐK: cosx + 1 ≠ 0 <=> cosx ≠ -1 <=> x ≠ π + k2π

<=> sin3x = 0

<=> 3x = kπ

<=> x = 1/3 kπ (k thuộc Z) (n)

Vậy ...

NV
24 tháng 7 2020

d/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+4=4\left(\sqrt{3}sinx+cosx\right)\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{5}{2}=4\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow2sin^2\left(x+\frac{\pi}{6}\right)+4sin\left(x+\frac{\pi}{6}\right)-\frac{7}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{-2+\sqrt{11}}{2}\\sin\left(x+\frac{\pi}{6}\right)=\frac{-2-\sqrt{11}}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\\x=\frac{5\pi}{6}-arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\end{matrix}\right.\)

NV
24 tháng 7 2020

c/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)