K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(mx^2-2mx-1+2m< =0\)(1)

TH1: m=0

BPT (1) sẽ trở thành

\(0\cdot x^2-2\cdot0\cdot x-1-2\cdot0< =0\)

=>-1<=0(luôn đúng)

=>Nhận

TH2: m<>0

\(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(2m-1\right)\)

\(=4m^2-8m^2+4m=-4m^2+4m\)

Để BPT (1) luôn đúng với mọi x thuộc R thì

\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4m^2+4m< =0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4m\left(m-1\right)< =0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)>=0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>=1\\m< =0\end{matrix}\right.\\m< 0\end{matrix}\right.\)

=>m<0

Do đó: m<=0

mà \(m\in Z;m\in\left(-10;10\right)\)

nên \(m\in\left\{-9;-8;...;-1;0\right\}\)

=>Số giá trị nguyên thỏa mãn là 10

20 tháng 4 2021

Làm giúp em đi ạ😗

28 tháng 7 2021

\(mx^2-2\left(m+2\right)x+2m-1< 0\)

\(< =>mx^2-2\left(m+2\right)x+2m-1\ge0\)

\(a=m\ne0\)

\(\Delta=\left(2m+2\right)^2-4m\left(2m-1\right)\)

\(\Delta=4m^2+8m+4-8m^2+4m\)

\(\Delta=12m-4m^2+4\)

\(< =>\hept{\begin{cases}a>0\\\Delta\le0\end{cases}\hept{\begin{cases}m>0\\12m-4m^2+4\le0\end{cases}\hept{\begin{cases}m>0\\m=\left[\frac{3-\sqrt{13}}{2};\frac{3+\sqrt{13}}{2}\right]\end{cases}}}}\)

\(< =>m=(0;\frac{3+\sqrt{13}}{2}]\)

vậy m vô số nghiệm để bpt vô nghiệm

 

a: Trường hợp 1: m=0

Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)

=>1>0(luôn đúng)

Trường hợp 2: m<>0

\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)

\(=9m^2-4m^2-4m=5m^2-4m\)

Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)

Vậy: 0<=m<4/5

b: Trường hợp 1: m=4

\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)

Trường hợp 2: m<>4

\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)

\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)

\(=4m^2-32m+64-4m^2+36m-80\)

=4m-16

Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)

Vậy: m<=4

26 tháng 2 2017

+ Nếu m = 0 thì bất phương trình nghiệm đúng với mọi x;

    + Nếu m = -2 thì bất phương tình trở thành – 4x + 2 > 0, không nghiệm đúng với mọi x.

    + Nếu m ≠ 0 và m ≠ -2 thì bất phương trình nghiệm đúng với mọi x khi và chỉ khi

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Đáp số: m < -4; m ≥ 0

NV
20 tháng 3 2021

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow m^2-6m-7\le0\)

\(\Rightarrow-1\le m\le7\)

\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)