Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
\(f\left(x\right):g\left(x\right)\)
\(\Rightarrow\left(x^{100}+x^{99}+x^{98}+x^5+2020\right):\left(x^2-1\right)\)
\(=\left(x^{98}+x^{97}+2x^{96}+2x^{95}+...2x^4+3x^3+2x^2+3x+2\right)\) có số dư là \(R\left(x\right)=3x+2022\)
\(\Rightarrow R\left(2021\right)=3.2021+2022=8085\)
\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)
Để dư bằng 0 thì \(x^2-5x+4=0\)
\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
Gọi R là số dư của phép chia f(x) cho g(x)
Đặt phép chia như bình thường, ta được:
\(f\left(x\right):g\left(x\right)=x+3\) dư \(x^2-5x+4\)
Để phép chia trên dư 0 thì:
\(x^2-5x+4=0\)
\(\Rightarrow x^2-x-4x+4=0\)
\(\Rightarrow x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\) thì dư của phép chia f(x) : g(x) = 0
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
Lời giải:
Sử dụng bổ đề. Với $f(x)$ có hệ số nguyên thì $f(a)-f(b)\vdots a-b$ với $a,b$ là nguyên khác nhau.
Áp dụng vào bài toán, ta dễ dàng chỉ ra $g(x^3)-g(-1)\vdots x^3+1\vdots x^2-x+1(1)$
Giả sử $f(x)=x^2+xg(x^3)\vdots x^2-x+1$
$\Leftrightarrow g(x^3)+x\vdots x^2-x+1(2)$
$(1);(2)\Rightarrow x+g(-1)\vdots x^2-x+1$ (vô lý)
Do đó ta có đpcm.
Akai Haruma Giáo viên, mk ko hiểu cái chỗ g(x^3)+x chia hết cho x^2-x+1 với cái dòng tiếp theo ngay sau đó ấy. Bn giải thích rõ đc ko??
tách ra \(\left(x+3\right)\left(x^2-3x+9\right):\left(x^2-3x+9\right)=\left(x+3\right)\)
mình nha