Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Đa thức chia là bậc 2 do đó đa thức dư nhiều nhất sẽ là bậc 1 .
Ta có : \(P\left(x\right)=Q\left(x\right).\left(x^2-5x+6\right)+ax+b\)
Theo bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}P\left(2\right)=2a+b=-2\\P\left(3\right)=3a+b=-3\end{matrix}\right.\)
Giải hệ phương trình ta tìm được :
\(\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)
Vậy số dư trong phéo chia là \(-x\)
Bài 2 : Mình suy nghĩ sau !
Chúc bạn học tốt
\(=x^{161}+x^{37}+x^{13}+x^5+x+2006\)
\(=\left(x^{161}+x^3\right)+\left(x^{37}+x^3\right)+\left(x^{13}+x^3\right)+\left(x^5+x^3\right)+\left(-4x^3-4x\right)+5x+2006\)
\(=x^3\left(\left(x^2\right)^{79}+1\right)+x^3\left(\left(x^2\right)^{17}+1\right)+x^3\left(\left(x^2\right)^5+1\right)+x^3\left(\left(x\right)^2+1\right)-4x\left(x^2+1\right)+5x+2006\)
\(=\left(x^2+1\right)A\left(x\right)+5x+2006\)
Vậy số dư của P(x) chia cho x2 + 1 là 5x + 2006
AD định lý Bơ-du: 'Dư trong phép chia f(x) cho x-a là f(a)'
=> Dư trong phép chia trên là:
f(-1)= (-1)161 + (-1)37 + (-1)13 + (-1)5 - 1+2006
= 2001
Vậy.......
Áp dụng định lý Bơ-du:
Thay\(f\left(1\right)\) vào \(f\left(x\right)\),ta được:
\(1^{81}-45.1^{37}+2061=1-45+2061=2017\)
Vậy số dư là 2017
Chúc bạn học tốt
2017