Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm cạnh BC của tam giác ABC vuông tại A ta có MA=MB=MC nêm M là tâm đường tròn ngoại tiếp ABC, với BC là đường kính
M là trung điểm cạnh BC của tam giác ABC vuông tại A ta có MA=MB=MC nên M là tâm đường tròn ngoại tiếp ABC với BC là đường kính
Sử dụng công thức Hê - rông nha
Nửa chu vi tam giác là :
\(p=\frac{\sqrt{20}+\sqrt{26}+\sqrt{34}}{2}\approx7,7\)
Diện tích tam giác là :
\(S=\sqrt{7,7\left(7,7-\sqrt{20}\right)\left(7,7-\sqrt{26}\right)\left(7,7-\sqrt{34}\right)}=11đvdt\)
Vậy \(S_{\Delta}=11đvdt\)
Công thức lớp 10 đó
Giải theo công thức Heron:
\(S_{\Delta}=\frac{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}{4}\)
Thay độ dài các cạnh của tam giác vào, ta được \(S_{\Delta}=1936\)
Ta có: \(\hept{\begin{cases}\sqrt{5+1}< \sqrt{16}\\\sqrt{16}< \sqrt{17}\\\sqrt{17}< \sqrt{45}=3\sqrt{5}\end{cases}}\)
Từ đây,ta có: \(\sqrt{5+1}< \sqrt{17}< \sqrt{5}\)
Theo BĐT tam giác thi tổng dài hai cạnh của tam giác luôn lớn hơn cạnh còn lại.
Ta có: \(\sqrt{5+1}+\sqrt{17}=\sqrt{7}+\sqrt{6}\)
Mặt khác,hiển nhiên ta có: với a,b > 0 thì \(a+b< ab\)
Áp dụng vào,ta có: \(\sqrt{5+1}+\sqrt{17}=\sqrt{7}+\sqrt{6}< \sqrt{7}.\sqrt{6}=\sqrt{42}< \sqrt{45}=3\sqrt{5}\)
Từ đây ta có: \(\sqrt{5+1}+\sqrt{17}< 3\sqrt{5}\) (không thỏa mãn)
Vậy không tồn tại tam giác với độ dài 3 cạnh đã cho
Gọi độ dài cạnh góc vuông của tam giác là a,ba,b, độ dài cạnh huyền là cc (ĐK: a,b,c∈Z+a,b,c∈Z+;a+b>c;c>a;c>ba+b>c;c>a;c>b)
Theo đề bài:
a2+b2=c2a2+b2=c2 (Định lí Py−ta−goPy−ta−go)
và ab=3.(a+b+c)ab=3.(a+b+c)
⟺2ab=6(a+b+c)⟺2ab=6(a+b+c)
⟺a2+2ab+b2=c2+6(a+b+c)⟺a2+2ab+b2=c2+6(a+b+c)
⟺(a+b)2−6(a+b)+9=c2+6c+9⟺(a+b)2−6(a+b)+9=c2+6c+9
⟺(a+b−3)2=(c+3)2⟺(a+b−3)2=(c+3)2
⟺a+b−3=c+3∨a+b−3=−3−c⟺a+b−3=c+3∨a+b−3=−3−c
⟺a+b=c+6∨a+b=−c⟺a+b=c+6∨a+b=−c (TH sau vô lí vì a+b>0>−ca+b>0>−c)
⟺a+b=c+6⟺a+b=c+6.
⟺6a+6b=6c+36⟺6a+6b=6c+36 (1)(1)
Vì a2+b2=c2a2+b2=c2
⟺(a+b)2−2ab=c2⟺(a+b)2−2ab=c2
⟺(c+6)2−2ab=c2⟺(c+6)2−2ab=c2
⟺c2+12c+36−2ab=c2⟺c2+12c+36−2ab=c2
⟺12c+36=2ab⟺12c+36=2ab
⟺6c+18=ab⟺6c+18=ab (2)(2)
Từ (1),(2)(1),(2) →6a+6b−ab=6c+36−6c−18→6a+6b−ab=6c+36−6c−18
⟺ab−6a−6b+18=0⟺ab−6a−6b+18=0
⟺(a−6)(b−6)=18⟺(a−6)(b−6)=18
Giả sử a≥ba≥b
Giải phương trình tích trên được (a;b)=(24;7);(12;9);(15;8)(a;b)=(24;7);(12;9);(15;8)
Tìm được (a;b;c)=(24;7;25);(12;9;15);(15;8;17)
Gọi cạnh hình tam giác là a chu vi là C diện tích là S. Theo đề bài ra ta có
C×3=S×2
C=a×3 và S=a×a:2
Mà a×3×3 = a×a:2×2
a×9 = a×a ×1
a×9= a×a
Suy ra a=9 . Vậy cạnh của hình tam giác là 9
Ta có \(\sqrt{17}< \sqrt{19,36}=4,4\)
\(\sqrt{5}>2,2\) => \(2\sqrt{5}>2,2.2=4,4\)
Vì \(\sqrt{5}>2,2\) nên \(\sqrt{5}+1< 2\sqrt{5}\)
Vậy \(2\sqrt{5}\) là cạnh lớn nhất
Xét \(\sqrt{17}+\left(\sqrt{5}+1\right)\)
Ta có \(\sqrt{17}>\sqrt{16}=4\)
\(\sqrt{5}>2\) => \(\sqrt{17}+\left(\sqrt{5}+1\right)>4+2+1=7\)
Ta có \(\sqrt{5}< 3\) => \(2\sqrt{5}< 2.3=6\)
Vậy \(\sqrt{17}+\left(\sqrt{5}+1\right)>2\sqrt{5}\)
Vậy có tam giác có độ dài 3 cạnh như trên