K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

Gọi M là trung điểm cạnh BC của tam giác ABC vuông tại A ta có MA=MB=MC nêm M là tâm đường tròn ngoại tiếp ABC, với BC là đường kính

20 tháng 8 2016

M là trung điểm cạnh BC của tam giác ABC vuông tại A ta có MA=MB=MC nên M là tâm đường tròn ngoại tiếp ABC với BC là đường kính

Sử dụng công thức Hê - rông nha 

Nửa chu vi tam giác là : 

\(p=\frac{\sqrt{20}+\sqrt{26}+\sqrt{34}}{2}\approx7,7\)

Diện tích tam giác là : 

\(S=\sqrt{7,7\left(7,7-\sqrt{20}\right)\left(7,7-\sqrt{26}\right)\left(7,7-\sqrt{34}\right)}=11đvdt\)

Vậy \(S_{\Delta}=11đvdt\)

Công thức lớp 10 đó 

13 tháng 2 2020

Giải theo công thức Heron:

\(S_{\Delta}=\frac{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}{4}\)

Thay độ dài các cạnh của tam giác vào, ta được \(S_{\Delta}=1936\)

21 tháng 2 2018

:v Sử dụng công thức heron để tính

10 tháng 4 2018

dung roi rat la ...

15 tháng 1 2019

Ta có: \(\hept{\begin{cases}\sqrt{5+1}< \sqrt{16}\\\sqrt{16}< \sqrt{17}\\\sqrt{17}< \sqrt{45}=3\sqrt{5}\end{cases}}\)

Từ đây,ta có: \(\sqrt{5+1}< \sqrt{17}< \sqrt{5}\)

Theo BĐT tam giác thi tổng dài hai cạnh của tam giác luôn lớn hơn cạnh còn lại.

Ta có: \(\sqrt{5+1}+\sqrt{17}=\sqrt{7}+\sqrt{6}\)

Mặt khác,hiển nhiên ta có: với a,b > 0 thì \(a+b< ab\)

Áp dụng vào,ta có: \(\sqrt{5+1}+\sqrt{17}=\sqrt{7}+\sqrt{6}< \sqrt{7}.\sqrt{6}=\sqrt{42}< \sqrt{45}=3\sqrt{5}\)

Từ đây ta có: \(\sqrt{5+1}+\sqrt{17}< 3\sqrt{5}\) (không thỏa mãn)

Vậy không tồn tại tam giác với độ dài 3 cạnh đã cho

Gọi độ dài cạnh góc vuông của tam giác là a,ba,b, độ dài cạnh huyền là cc (ĐK: a,b,c∈Z+a,b,c∈Z+;a+b>c;c>a;c>ba+b>c;c>a;c>b)

Theo đề bài:

a2+b2=c2a2+b2=c2 (Định lí Py−ta−goPy−ta−go)

và ab=3.(a+b+c)ab=3.(a+b+c)

⟺2ab=6(a+b+c)⟺2ab=6(a+b+c)

⟺a2+2ab+b2=c2+6(a+b+c)⟺a2+2ab+b2=c2+6(a+b+c)

⟺(a+b)2−6(a+b)+9=c2+6c+9⟺(a+b)2−6(a+b)+9=c2+6c+9

⟺(a+b−3)2=(c+3)2⟺(a+b−3)2=(c+3)2

⟺a+b−3=c+3∨a+b−3=−3−c⟺a+b−3=c+3∨a+b−3=−3−c

⟺a+b=c+6∨a+b=−c⟺a+b=c+6∨a+b=−c (TH sau vô lí vì a+b>0>−ca+b>0>−c)

⟺a+b=c+6⟺a+b=c+6.

⟺6a+6b=6c+36⟺6a+6b=6c+36 (1)(1)

Vì a2+b2=c2a2+b2=c2

⟺(a+b)2−2ab=c2⟺(a+b)2−2ab=c2

⟺(c+6)2−2ab=c2⟺(c+6)2−2ab=c2

⟺c2+12c+36−2ab=c2⟺c2+12c+36−2ab=c2

⟺12c+36=2ab⟺12c+36=2ab

⟺6c+18=ab⟺6c+18=ab (2)(2)

Từ (1),(2)(1),(2) →6a+6b−ab=6c+36−6c−18→6a+6b−ab=6c+36−6c−18

⟺ab−6a−6b+18=0⟺ab−6a−6b+18=0

⟺(a−6)(b−6)=18⟺(a−6)(b−6)=18

Giả sử a≥ba≥b

Giải phương trình tích trên được (a;b)=(24;7);(12;9);(15;8)(a;b)=(24;7);(12;9);(15;8)

Tìm được (a;b;c)=(24;7;25);(12;9;15);(15;8;17)

10 tháng 5 2017

Gọi cạnh hình tam giác là a chu vi là C diện tích là S. Theo đề bài ra ta có

C×3=S×2

C=a×3  và S=a×a:2

Mà a×3×3 = a×a:2×2

       a×9 = a×a ×1

        a×9= a×a

        Suy ra a=9 . Vậy cạnh của hình tam giác là 9

19 tháng 4 2017

Ta có \(\sqrt{17}< \sqrt{19,36}=4,4\)

\(\sqrt{5}>2,2\) => \(2\sqrt{5}>2,2.2=4,4\)

Vì \(\sqrt{5}>2,2\) nên \(\sqrt{5}+1< 2\sqrt{5}\)

Vậy \(2\sqrt{5}\) là cạnh lớn nhất

Xét \(\sqrt{17}+\left(\sqrt{5}+1\right)\)

Ta có \(\sqrt{17}>\sqrt{16}=4\)

\(\sqrt{5}>2\) => \(\sqrt{17}+\left(\sqrt{5}+1\right)>4+2+1=7\)

Ta có \(\sqrt{5}< 3\) => \(2\sqrt{5}< 2.3=6\)

Vậy \(\sqrt{17}+\left(\sqrt{5}+1\right)>2\sqrt{5}\)

Vậy có tam giác có độ dài 3 cạnh như trên

19 tháng 4 2017

Thử phương pháp a-b<c<a+b nhé, c là cạnh bất kì