Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
64 là số chính phương vì \(64=8^2\) và \(8\in\mathbb{N}\)
Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.
Ta có: ab + ba
= ( 10a + b) + ( 10b + a)
= 11a + 11b = 11 . ( a + b)
Ta đã biết số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn, không chứa các thừa số nguyên tố với số mũ lẻ nên để ab + ba là số chính phương thì a + b = 11. k2 ( k thuộc N)
Do a,b là chữ số và a khác 0 nên 1 <= a + b <= 18
=> a + b = 11 = 2 + 9 = 3 + 8 = 4 + 7 = 5 + 6
Vậy số cần tìm là 29 ; 38 ; 47 ; 56 ; 65 ; 74 ; 83 ; 92
2) 132 - 52 = ( 13 - 5 )( 13 + 5 ) = 8 x 18 = 4 x 4 x 3 x 3 = 122
vì số chính phương là bình phương của 1 số tự nhiên
nên \(13^2\)là số chính phương
5 nha bạn:D