K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên

Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm

TH1: (2x-3)2=0 và |y-2|=1

\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)

Ta không xét đến |y-2|=1 nữa!

TH2: (2x-3)2=1 và |y-2|=0

  • \(\left(2x-3\right)^2=1\Rightarrow\orbr{\begin{cases}2x-3=-1\\2x-3=1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-2\\2x=4\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
  • \(\left|y-2\right|=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)

Vậy có 2 cặp x;y thỏa mãn là .........................

25 tháng 12 2016

\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)

\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)

Với x=1,2=>có y=2

với 1,3 không có x thỏa mãn

KL:

(xy)=(1,2); (2,2)

7 tháng 3 2018

x=0 , y=1

7 tháng 3 2018

cho mình xin cách giải

5 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2-x^2+y^2+x^2}{3+5}=\frac{y^2+y^2}{8}=\frac{2y^2}{8}\)

\(\Rightarrow\frac{y^2-x^2}{3}=\frac{2y^2}{8}\)

\(\Rightarrow\frac{y^2-x^2}{3}=\frac{y^2}{4}\)

\(\Rightarrow4y^2-4x^2=3y^2\)

\(\Rightarrow4y^2-3y^2=4x^2\)

\(\Rightarrow y^2=4x^2\)

Thế vào \(x^{10}.y^{10}=1024\), ta có:

\(x^{10}.\left(y^2\right)^5=1024\)

\(x^{10}.\left(4x^2\right)^5=1024\)

\(\Rightarrow1024.x^{10}.x^{10}=1024\) ( cái này thì ko chắc )

\(\Rightarrow x^{20}=1\)

\(\Rightarrow x=1;x=-1\)

\(\Rightarrow y=2;y=-2\)

Vậy có 2 cặp ( x ; y ) thỏa mãn.

 

5 tháng 8 2016

\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\)( từ đây ta thấy \(y^2-x^2;y^2+x^2\)cùng dấu )

\(\Rightarrow5y^2-5x^2=3y^2+3x^2\)

\(2y^2=8x^2\)

\(y^2=\left(2x\right)^2\)

\(\Rightarrow\left[\begin{array}{nghiempt}y=2x\\y=-2x\end{array}\right.\)

\(x^{10}y^{10}=1024\Rightarrow\left[\begin{array}{nghiempt}xy=2\\xy=-2\end{array}\right.\)

Với \(xy=2\)

\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

Với \(xy=-2\)

\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

Tóm lại ta có :

\(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right);\left(2;1\right);\left(-2;-1\right)\right\}\)

2 tháng 3 2016

x+y+xy=3

<=>(x+xy)+y=3

<=>x(y+1)+y+1=3+1=4

<=>x(y+1)+(y+1)=4

<=>(x+1)(y+1)=4

lập bảng,tìm  Ư(4);

đáp án:6 cặp (x;y)

2 tháng 3 2016

x+y+xy=3

<=>x(y+1)+(y+1)=4

<=>(x+1)(y+1)=4

Vì x,y thuộc Z nên ta có:

x+114-1-42-2
y+141-4-12-2
x03-2-51-3
y30-5-21-3
6 tháng 1 2016

Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4

Vì x,y nguyên nên (x+1) và (y+1) nguyên

Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2

Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1

Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)

 Ta có 

x+y+xy=3 
<=> (x+xy) + (y+1) = 4 
<=> x(y+1) + (y+1) = 4 
<=> (x+1)(y+1) = 4 

Vì x,y nguyên nên (x+1) và (y+1) nguyên 

Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2 

Khi đó ta có: 
{x+1= -1 <=> {x= -2 
{y+1= -4........{y= -5 
hoặc 
{x+1= -4 <=> {x= -5 
{y+1= -1........{y= -2 
hoặc 
{x+1= -2 <=> {x= -3 
{y+1= -2........{y= -3 
hoặc 
{x+1= 4 <=> {x= 3 
{y+1= 1........{y= 0 
hoặc 
{x+1= 1 <=> {x= 0 
{y+1= 4........{y= 3 
hoặc 
{x+1= 2 <=> {x= 1 
{y+1= 2........{y= 1 

Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)

ê cáo, mở chat

30 tháng 9 2021

ê cáo,mở chat