Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Minh ko bik lam ban oi
vi minh la thang bgoc
123344
ngoc ngoc
m - 1 ⋮ 2m - 1
<=> 2(m - 1) ⋮ 2m - 1
<=> 2m - 2 ⋮ 2m - 1
<=> (2m - 1) - 1 ⋮ 2m - 1
=> 1 ⋮ 2m - 1 Hay 2m - 1 là ước của 1
Ư(1) = { ± 1 }
Ta có : 2m - 1 = 1 <=> 2m = 2 => m = 1
2m - 1 = - 1 <=> 2m = 0 => m = 0
Vạy m = { 0; 1 }
m - 1 chia hết cho 2m + 1
<=> 2.(m - 1) chia hết cho 2m + 1
<=> 2m - 2 = 2m + 1 - 3 chia hết cho 2m + 1
<=> 3 chia hết cho 2m + 1
<=> 2m + 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
<=> 2m \(\in\) {-4; -2; 0; 2}
<=> m \(\in\) {-2; -1; 0; 1}
Vậy có 4 giá trị của m thỏa mãn đề bài
a) Tách biểu thức \(\frac{m-1}{2m+1}\)ra :
\(\frac{2\left(m-1\right)}{2\left(2m+1\right)}\)= \(\frac{2m+1-3}{2\left(2m+1\right)}\)= \(\frac{1}{2}-\frac{3}{2\left(2m+1\right)}\)
Vậy để biểu thức m-1 chia hết cho 2m+1
<=> Biểu thức \(\frac{3}{2\left(2m+1\right)}\)= \(\frac{x}{2}\) với x là số nguyên
Nhân chéo biểu thức trên , ta được : \(6\) = \(2x\left(2m+1\right)\)
\(x=\frac{6}{4m+2}\) Vậy để x là số nguyên thì 6 phải chia hết cho 4m+2
\(4m+2\)thuộc (-6 , -3, -2, -1, 1, 2 , 3 , 6)
Để thỏa mãn điều kiện trên thì m có nghiệm là (-2, -1, 0, 1)
Vậy kết luận nếu m = -2 , m= - 1, m= 0 , m = 1 thì biểu thức m-1 chia hết cho 2m+1
b) Để \(\left|3m-1\right|< 3\)
<=> \(\orbr{\begin{cases}3m-1< 3\\3m-1>-3\end{cases}}\) <=> \(\orbr{\begin{cases}3m< 4\\3m>-2\end{cases}}\) <=> \(\frac{-2}{3}< m< \frac{4}{3}\)
Để số nguyên m thỏa mãn trường hợp trên thì m phải \(\in\left(0,1\right)\)
Vậy với m =0 hoặc m =1 thì \(\left|3m-1\right|< 3\)
\(m-1⋮2m+1\)
\(\Rightarrow2m-2⋮2m+1\)
\(\Rightarrow2m+1-3⋮2m+1\)
\(\Rightarrow3⋮2m+1\)
tu lam
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot5\cdot2\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
a) ta có: m - 1 chia hết cho 2m + 1
=> 2m - 2 chia hết cho 2m + 1
2m + 1 - 3 chia hết cho 2m + 1
mà 2m + 1 chia hết cho 2m + 1
=> 3 chia hết cho 2m + 1
...
bn tự làm tiếp nha!
b) \(\left|3m-1\right|< 3\)
TH1: 3m - 1 < 3
=> 3m < 4
=> m < 4/3
TH2: -3m + 1 < 3
=> -3m < 2
=> m > -2/3
=> -2/3 < m < 4/3
=> m thuộc { 0;1}
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Hok tốt !
Cho mình hỏi là tại sao các số a,b,c,d khi chia cho 2 hoặc 3 đều phải cùng số dư. Và để có g trị nhỏ nhất thì sao phải dư một
Mình không biết, xin lỗi nha!
2m-2-2m-1 = -3
2m+1(u)-3 =-1;1;-3;3
m = -1;0;-2