Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(B=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(B=\frac{5+\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(B=\frac{1}{\sqrt{x}+1}\)
\(b,P=A.B=\frac{4\left(\sqrt{x}+1\right)}{25-x}.\frac{1}{\sqrt{x}+1}\)
\(P=\frac{4}{25-x}\)
bổ sung điều kiện cho câu b là x nguyên
\(TH1:x>25< =>P< 0\left(KTM\right)\)
\(TH2:x< 25< =>P>0\)mà x nguyên
\(\frac{4}{25-x}\le4\)
dấu "=" xảy ra khi \(x=24\)
\(< =>MAX:P=4\)
c) Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9
A = \(-\frac{1}{\sqrt{x}-3}\) => -2A = \(\frac{2}{\sqrt{x}-3}\)
Để -2A thuộc Z <=> \(2⋮\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 |
x | 8 | 4 (ktm) | 25 | 1 |
Vậy ....
\(P=\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{4-6\sqrt{a}}{1-a}-\frac{-3}{\sqrt{a}+1}\)
ĐK : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
a) \(P=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{a-1}+\frac{3}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}+4-6\sqrt{a}+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+1}\)
Với \(a=4-2\sqrt{3}\)( tmđk \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))
\(P=\frac{\sqrt{4-2\sqrt{3}}-1}{\sqrt{4-2\sqrt{3}}+1}\)
\(=\frac{\sqrt{3-2\sqrt{3}+1}-1}{\sqrt{3-2\sqrt{3}+1}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}-1}{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}-1}{\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)
\(=\frac{\left|\sqrt{3}-1\right|-1}{\left|\sqrt{3}-1\right|+1}\)
\(=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)
b) \(P=\frac{\sqrt{a}-1}{\sqrt{a}+1}=\frac{\sqrt{a}+1-2}{\sqrt{a}+1}=1-\frac{2}{\sqrt{a}+1}\)( ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))
Để P đạt giá trị nguyên => \(\frac{2}{\sqrt{a}+1}\)nguyên
=> \(2⋮\sqrt{a}+1\)
=> \(\sqrt{a}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> \(\sqrt{a}\in\left\{0;1\right\}\)< đã loại hai trường hợp âm >
=> \(a\in\left\{0\right\}\)< loại trường hợp a = 1 >
Vậy với a = 0 thì P có giá trị nguyên
ĐK: \(x\ne25,x\ge0\).
\(T=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{5}{\sqrt{x}+5}-\frac{10\sqrt{x}}{x-25}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-5\left(\sqrt{x}-5\right)-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x+5\sqrt{x}-5\sqrt{x}+25-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)
\(T\)nguyên mà \(x\)nguyên nên \(\sqrt{x}+5\inƯ\left(10\right)\)mà \(\sqrt{x}+5\ge5\)nên \(\orbr{\begin{cases}\sqrt{x}+5=5\\\sqrt{x}+5=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=25\left(l\right)\end{cases}}\).
giá trị nguyên là bn v ạ:?)