Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có 5>3. để có bất đẳng thức cùng chiều 5b>3b ta phải nhân hai vế của bất phương trình 5>3 cho số dương. Vậy b là số dương
b)ta có -12<8 để có bất đẳng thức ngược chiều -12b>8b ta phải nhân hai vế của bất phương trình -12<8 cho số âm. vậy b âm
c)ta có -6=< 9 nên để có bất đẳng thức ngược chiều -6b>=9b ta phải nhân hai vế của bất phương trình -6=<9 cho số âm. vậy b âm
d) ta có 3=<15 để có bất đẳng thức cùng chiều 3b=<15b ta phải nhân hai vế của bất phương trình 3=<15 cho số dương. Vậy b là số dương
mình chưa học bài này nên cách giải không biết có đúng không nhưng kết quả chắc đúng
Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:
\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)
\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)
\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)
Cộng (1),(2) và (3) có:
\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)
\(\Rightarrow2VP\ge2VT\)
\(\RightarrowĐPCM\)
a) Do -8 < 4 nên a < 0 b) Do 5 ≤ 30 nên a ≥ 0
c) Do 6 < 12 nên a ≤ 0. d) Do -5 < 15 nên a < 0.
a: 5b>3b
nên 5b-3b>0
=>2b>0
hay b>0
b: -12b>8b
nên -20b>0
hay b<0
c: -6b>=9b
nên -6b-9b>=0
=>b<=0
d: 3b<=15b
=>3b-15b<=0
=>-12b<=0
hay b>=0