K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 5b>3b

nên 5b-3b>0

=>2b>0

hay b>0

b: -12b>8b

nên -20b>0

hay b<0

c: -6b>=9b

nên -6b-9b>=0

=>b<=0

d: 3b<=15b

=>3b-15b<=0

=>-12b<=0

hay b>=0

13 tháng 3 2017

a)ta có 5>3. để có bất đẳng thức cùng chiều 5b>3b ta phải nhân hai vế của bất phương trình 5>3 cho số dương. Vậy b là số dương

b)ta có -12<8 để có bất đẳng thức ngược chiều -12b>8b ta phải nhân hai vế của bất phương trình -12<8 cho số âm. vậy b âm

c)ta có -6=< 9 nên để có bất đẳng thức ngược chiều -6b>=9b ta phải nhân hai vế của bất phương trình -6=<9 cho số âm. vậy b âm

d) ta có 3=<15 để có bất đẳng thức cùng chiều 3b=<15b ta phải nhân hai vế của bất phương trình 3=<15 cho số dương. Vậy b là số dương

mình chưa học bài này nên cách giải không biết có đúng không nhưng kết quả chắc đúngok

10 tháng 3 2018

Vì 5 > 3 mà 5b > 3b nên b là số dương

30 tháng 10 2017

Vì -12 < 8 mà -12b > 8b nên b là số âm

26 tháng 7 2017

Vì 3 < 5 mà 3b  ≤  5b nên b là số không âm (tức b ≥ 0)

27 tháng 11 2018

Vì -6 < 9 mà -6b  ≥  9b nên b là số không dương (tức b ≤ 0)

8 tháng 2 2022

jjjjjjjjjjjjjjjj

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

24 tháng 3 2019

a) Do -8 < 4 nên a < 0        b) Do 5 ≤ 30 nên  a ≥ 0

c) Do 6 < 12 nên a ≤ 0.       d) Do -5 < 15 nên a < 0.