Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tích 2 stn liên tiếp chia 3 dư 0 hoặc 2
mà 350+1 chia 3 dư 1 nên ko là tích 2 stn liên tiếp
Bạn giải thích tại sao Tích 2 số tn liên tiếp chia 3 dư 0 hoặc 2 đi, hay là bạn chỉ chép lời giải trong ''nâng cao và phát triển toán 8'' thôi?
Ta có :
3^50+1=3^25.3^25+1=(3^25-1)3^25+1+3^25
Ta thấy :(3^25-1)3^25 là tích hai số tự nhiên liên tiếp.Đặt a là số tự nhiên sao cho 3^25(3^25-1)+a bằng tích 2 số tự nhiên liên tiếp và a nhỏ nhất Nên: 3^25(3^25-1)+a=3^25(3^25+1)
3^25.3^25+a-3^25=3^25.3^25+3^25
3^25.3^25+a=3^25.3^25+3^25.2
=>a=3^25.2.Ta thấy :3^25.2>3^25+1=>a>3^25+1 mà a nhỏ nhất nên 3^50+1 không phải là tích hai số tự nhiên liên tiếp.
tick nha bạn bài dưới làm sai nên minh thêm vai chỗ cho đúng.!!!!!!!!!!!!!
nhìn anh làm này:
Ta có :
3^50+1=3^25.3^25+1=(3^25-1)3^25+1+3^25+1.
Ta thấy (3^25-1)3^25 là tích hai số liên tiếp .Đặt a là số tự nhiên sao cho 3^25(3^25-1)+a bằng tích 2 số tự nhiên liên tiếp và a là số nhỏ nhất.Mà a nhỏ nhất nên 3^25.(3^25-1)+a=3^25.(3^25+1)
3^25.3^25+a-3^25 =3^25.3^25+3^25
3^25.3^25+a =3^25.3^25+3^25.2
=>a=3^25.2.Ta thấy 3^25.2>3^25+1 mà a nhỏ nhất nên 3^50 +1 không phải là tích hai số tư nhiên liên tiếp.
TICK NHA BẠN
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
2. Gọi 4 số TN liên tiếp lần lượt là :a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ( a thuộc N)
Ta có : a + a + 1 + a + 2 + a + 3 + a + 4 = a + a + a + a + 1 + 2 +3 + 4 = 4a + 6
Vì 4a chia hết cho 2 ; 6 chia hết cho 2 nên 4a + 6 chia hết cho 2
Vì 4a chia hết cho 4 ; 6 không chia hết cho 4 nên 4a + 6 không chia hết cho 4
Do đó tổng của 4 số TN liên tiếp chia hết cho 2 nhưng không chia hết cho 22
Do đó tổng của 4 số TN liên tiếp không là số chính Phương
Học tốt 🐱
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
TÍch của 2 stn liên tiếp ko có dạng 3k+1 nên sai