Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{cos3x+cos9x+cos5x+cos7x}{sin3x+sin9x+sin5x+sin7x}=\frac{2cos6x.cos3x+2cos6x.cosx}{2sin6x.cos3x+2sin6x.cosx}\)
\(=\frac{2cos6x\left(cos3x+cosx\right)}{2sin6x\left(cos3x+cosx\right)}=tan6x\)
\(A=1\Rightarrow tan6x=1\Rightarrow x=\frac{\pi}{24}+\frac{k\pi}{6}\)
c/
\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{\sqrt{2}}\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx.cosx+1-2sin^2x=1\)
\(\Leftrightarrow2sinx\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin5x-\frac{1}{2}cos5x=-1\)
\(\Leftrightarrow sin\left(5x-\frac{\pi}{6}\right)=-1\)
\(\Leftrightarrow5x-\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{15}+\frac{k2\pi}{5}\)
b/
\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
1.
\(\Leftrightarrow cos3x=-\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=40^0+k120^0\\x=-40^0+k120^0\end{matrix}\right.\)
\(\Rightarrow x=\left\{40^0;160^0;80^0\right\}\)
2.
Bạn coi lại đề, số \(-\sqrt{3}\) bên vế trái ko hề hợp lý, toán cho cấp 1 như vầy còn được chứ cấp 3 chắc ko ai cho đề kiểu vậy đâu
3.
\(\Leftrightarrow\sqrt{3}sin3x-cos3x=-sin5x-\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=-\left(\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\right)\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(-5x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=-5x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\frac{4\pi}{3}+5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{48}+\frac{k\pi}{4}\\x=-\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
4.
ĐKXĐ: \(2cos^2x+sinx-1\ne0\)
\(\Leftrightarrow-2sin^2x+sinx+1\ne0\Rightarrow\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)
Khi đó pt tương đương:
\(\Leftrightarrow\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\left(loại\right)\\x=-\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
3.
\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)
\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)
sin3x + 1=2sin22x
<=> sin3x + 1 = 2\(\dfrac{1-cos4x}{2}\)
<=> sin3x + 1 = 1 - cos4x
<=> sin3x = -cos4x
<=> sin3x + cos4x = 0
<=> \(\dfrac{\sqrt{2}}{2}\)sin3x + \(\dfrac{\sqrt{2}}{2}\)cos4x = 0 (chia 2 vế cho \(\sqrt{2}\)).
<=> cos\(\dfrac{\pi}{4}\)sin3x + sin\(\dfrac{\pi}{4}\)cos4x = 0
<=> sin (3x+\(\dfrac{\pi}{4}\)) = 0
<=> sin(3x+\(\dfrac{\pi}{4}\)) = sin0
<=> \(\left[{}\begin{matrix}3x+\dfrac{\pi}{4}=0+k2\pi\\3x+\dfrac{\pi}{4}=\pi-0+k2\pi\end{matrix}\right.\)(k\(\in\)Z)
<=>\(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{12}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(k\(\in\)Z)