K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

  sắp xếp theo trình tự 3-2-4-1

17 tháng 3 2018

Đáp án là :

\(\frac{1005}{2002}< \frac{1011}{2004}< \frac{1009}{2010}< \frac{1007}{2006}\)

13 tháng 12 2023

\(\sqrt{16}=4;\dfrac{2}{3}=0,\left(6\right);\Omega=3,14;-\sqrt{5}\simeq-2,24\)

\(-5,6< -2,23< 0\)

=>\(-5,6< -\sqrt{5}< 0\)(1)

\(0< \dfrac{2}{3}< 3,14< 4\)

=>\(0< \dfrac{2}{3}< \Omega< \sqrt{16}\)(2)

Từ (1) và (2) suy ra \(-5,6< -\sqrt{5}< 0< \dfrac{2}{3}< \Omega< \sqrt{16}\)

10 tháng 6 2017

\(-2< -1,75< 0< \sqrt{5}< \pi< \dfrac{22}{7}< 5\dfrac{3}{6}.\)

6 tháng 5 2018

-2<-1.75<0<√5<π<22/7<5 3/6

31 tháng 7 2021

giúp mink với ik mink cần gấp lắm lun íiiiiiiiiii

 

31 tháng 7 2021

a) 5, 1, 1/2, 0, -2/3, -2, -3

b) \(\sqrt{2}\), 1, 1/2, 0, -1, -4/3, \(-\sqrt{5}\), -3

3 tháng 4 2017

Ta có:

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=P\Rightarrow S-P=0\)

\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)

Vậy \(\left(S-P\right)^{2016}=0\)

29 tháng 3 2018

Ta có:

*) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)

\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)

\(\Rightarrow S=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

Vậy \(\left(S-B\right)^{2016}=\left[\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)\right]^{2016}\)

\(\Rightarrow\left(S-B\right)^{2016}=0^{2016}\)

\(\Rightarrow\left(S-B\right)^{2016}=0\)

16 tháng 11 2022

\(\sqrt{484}-\dfrac{1}{\sqrt{5}}< \sqrt{529}-\dfrac{1}{19}< \sqrt{576}-\dfrac{1}{\sqrt{7}}< \sqrt{625}-\dfrac{1}{\sqrt{8}}\)

Thứ tự các số từ lớn đến nhỏ.undefined

11 tháng 8 2021

viết đoạn văn trình bày giải pháp để mình và mọi người tránh dịch covid

giúp với ạ