Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(99.100.101-0.1.2):3=333300
các bn cho mk vài li-ke cho tròn 670 với
S=1.2+2.3+3.4+...+99.100
=>3S=3.1.2+3.2.3+3.3.4+...+3.99.100
=(3-0).1.2+(4-1).2.3+(5-2).3.4+...+(101-98).99.100
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101
=90900
=>S=90900:3=30300
(Bài toán 1:Cho A =1.2+2.3+3.4+…+97.98+98.99+99.100. Tính giá trị của A
Lời giải 1:Theo đề bài ta có:
A.3=(1.2+2.3+3.4+…+97.98+98.99+99.100).3 =1.2(3-0)+2.3(4-1)+3.4(5-2)+ …+98.99(100-97)+99.100(101-97) =1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6-…-97.98.99+98.99.100-98.99.100-99.100.101=99.100.101.
Vậy A = 333300
Bây giờ ta tạm thời quên đi đáp số 333300 mà chỉ chú ý tới tích cuối cùng 99.100.101 trong đó 99.100 là số hạng cuối cùng của A và 101là số tự nhiên kề sau của 100 , tạo thành tích ba số tự nhiên liên tiếp. Ta dễ dàng nghĩ tới kết quả sau:
1.2+2.3+3.4+4.5+5.6 +…+n(n+1)=
Các bạn có thể tự kiểm nghiệm kết quả này bằng cách giải tuơng tự như trên.
Bây giờ ta tìm lời giải khác cho bài toán .
3S=1.2.3+2.3.3+3.4.3+...+99.100.3
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+... 99.100.101-98.99.100
3S= 99.100.101
S= 99.100.101/3
S=333300
Ai t ick tui tui t ick lại
3A = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100
3A = 99.100.101
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
Dễ mà , cô giáo minh vừa dạy xong:
Nhận xét:Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Ta nhân 2 vế của S với 3 lần khoảng cách này ,ta được:
3S=3.(1.2+2.3+3.4+4.5+...+99.100)
3S=1.2.3+2.3.3+3.4.3+4.5.3+....+99.100.3
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+....+99.100.(101-98)
3S=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+99.100.101-98.99.100
3S=99.100.101
S=99.100.101 /3
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300
S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3S = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
S = 1.2 + 2.3 + ... + 99.100
4S = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)
4S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
4S = (1.2.3 + 2.3.4 +...+ 99.100.101) - (0.1.2 + 1.2.3 +...+ 98.99.100)
4S = 99.100.101 - 0.1.2
4S = 99.100.101
S = 99.25.101
S = 249975
\(S=1.2+2.3+3.4+4.5+5.6+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)\(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101+98.99.100\)
\(3S=\left(1.2.3-1.2.3\right)+\left(2.3.4-2.3.4\right)+...+\left(98.99.100-98.99.100\right)+99.100.101\)
\(3S=99.100.101=9999000\)
\(S=9999000:3=3333000\)
\(\Rightarrow S=3333000\)
S=1.2+2.3+3.4+...+99.100
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3S=99.100.101
S=(99.100.101):3=333300