Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có S = \(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+\dfrac{4}{16}+...+\dfrac{10}{2^{10}}\)
= \(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{10}{2^{10}}\)
2S = 1 + \(\dfrac{2}{2}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{10}{2^9}\)
2S - S = ( 1 + \(\dfrac{2}{2}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{10}{2^9}\)) - ( \(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{10}{2^{10}}\))
S = 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}-\dfrac{10}{2^{10}}\)
Đặt A = 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)
2A = 2 + 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\)
2A - A = ( 2 + 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\)) - ( 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\))
A = 2 - \(\dfrac{1}{2^9}\)
⇒ S = 2 - \(\dfrac{1}{2^9}\) - \(\dfrac{10}{2^{10}}\) = \(\dfrac{2^{11}}{2^{10}}-\dfrac{2}{2^{10}}-\dfrac{10}{2^{10}}=\dfrac{2^2\left(2^9-3\right)}{2^{10}}=\dfrac{2^9-3}{2^8}\)
Vậy S = \(\dfrac{2^9-3}{2^8}\)
b2
\(A=16^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{13}.4.33\)
\(=2^{13}.132⋮132\)
Vậy S chia hết cho 132
Có \(16^5⋮4\)
\(2^{15}⋮4\)
\(\Rightarrow A⋮4\)(1)
Có \(16^5=\left(2^4\right)^5=2^{4.5}=2^{20}\)
Thay vào A\(\Rightarrow A=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.31\)
\(\Rightarrow A⋮33\)(2)\
Từ (1) và (2)\(\Rightarrow A⋮132\)
2S=32+33+34+....+32016
2S-S=(32+33+34+...+32016)-(3+32+33+....+32015)
S=22016-3
a) Số số hạng: (200-2):2+1=100\(\Rightarrow\)S=(2-4)+(6-8)+...+(1998-2000)=-2x50=-100
b) S=(2-4)-(6-8)-...-(1994-1996)-(1998-2000)=0
c) S=-(1+2+3+....+2005+2008+2007)
Số số hạng:(2007-1)+1=2007. Vậy S=-(2007+1)x2007:2=-2015028
a) 1/2 + 3/4 - (3/4 - 4 - 5)
= 1/2 + 3/4 - 3/4 + 4 + 5
= (3/4 - 3/4) + (4 + 5) + 1/2
= 0 + 9 + 1/2
= 19/2
b) [9/16 + 8/(-27)] - (19/27- 7/16 - 2)
= 9/16 - 8/27 - 19/27 + 7/16 + 2
= (9/16 + 7/16) + (-8/27 - 19/27) + 2
= 1 - 1 + 2
= 2
c) -5/8 . [4/9 + 7/(-12)]
= -5/8 . (-5/36)
= 25/288
d) 7/10 . (-3/5) + 7/10 . (-2/5) - (-3/10)
= 7/10 . (-3/5 - 2/5) + 3/10
= 7/10 . (-1) + 3/10
= -2/5
e) -3/7 . 5/9 + 4/9 . (-3/7) + 2 3/7
= -3/7 . (5/9 + 4/9) + 17/7
= -3/7 . 1 + 17/7
= 2
f) 8 2/7 - (3 4/9 + 4 2/7)
= 8 + 2/7 - 3 - 4/9 - 4 - 2/7
= (8 - 3 - 4) + (2/7 - 2/7) - 4/9
= 1 - 4/9
= 5/9
h) 3.(-1/2)² - (4/5 + 8/15) : 5/6
= 3.1/4 - 4/3 : 5/6
= 3/4 - 8/5
= -17/20
3:
\(A=10^{15}+5=1000...05\)(Có 15 chữ số 0)
Tổng các chữ số trong số A là:
1+0+0+...+0+5=6
=>A chia hết cho 3
=>Số dư khi A chia cho 3 là 0
Vì tổng các chữ số trong A là 6 không chia hết cho 9
nên số dư của A khi chia cho 9 là 6
5:
Số số hạng trong dãy từ 4 đến 160 là: \(\dfrac{160-4}{4}+1=\dfrac{156}{4}+1=40\left(số\right)\)
Tổng các số trong dãy từ 4 đến 160 là:
\(\left(160+4\right)\cdot\dfrac{40}{2}=164\cdot20=3280\)
=>C=3280+1=3281
Bạn xem viết đề có đúng không vậy? Chứ các số hạng có vẻ đang không tuân theo 1 quy luật nào cả.