Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+....+\left(-\dfrac{1}{7}\right)^{2017}\\ =1+-\dfrac{1}{7}+\dfrac{1}{7^2}+-\dfrac{1}{7^3}+.....+-\dfrac{1}{7^{2017}}\\ =\left(1+\dfrac{1}{7^2}+\dfrac{1}{7^4}+...+\dfrac{1}{7^{2016}}\right)-\left(\dfrac{1}{7}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{2017}}\right)\)
rồi bạn tính 2 về rồi trừ ra là xng nhé
Ta có: \(S=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2014}\)
\(\Leftrightarrow\dfrac{-1}{7}\cdot S=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+\left(-\dfrac{1}{7}\right)^3+...+\left(-\dfrac{1}{7}\right)^{2015}\)
\(\Leftrightarrow S-\dfrac{-1}{7}\cdot S=\left(-\dfrac{1}{7}\right)^0-\left(-\dfrac{1}{7}\right)^{2015}\)
\(\Leftrightarrow\dfrac{8}{7}\cdot S=1+\dfrac{1}{7^{2015}}\)
\(\Leftrightarrow S=\left(1+\dfrac{1}{7^{2015}}\right):\dfrac{8}{7}=\dfrac{\left(1+\dfrac{1}{7^{2015}}\right)\cdot7}{8}\)
S=(-1/7)0+(-1/7)1+...+(-1/7)2007
-1/7.S=(-1/7)1+(-1/7)2+...+(-1/7)2008
-1/7.S-S=[(-1/7)1+(-1/7)2+...+(-1/7)2008]-[(-1/7)0+(-1/7)1+...+(-1/7)2007]
-8/7.S=(-1/7)2008-(-1/7)0
-8/7.S=(1/7)2008-1
.........................
\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2017}\)
\(-\frac{1}{7}S=\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2018}\)
\(S-\left(-\frac{1}{7}S\right)=\left[\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2017}\right]-\left[\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2018}\right]\)
\(S+\frac{1}{7}S=\left(-\frac{1}{7}\right)^0-\left(-\frac{1}{7}\right)^{2018}\)
\(\frac{8}{7}S=1+\left(\frac{1}{7}\right)^{2018}\)
\(S=\frac{1+\frac{1}{7^{2018}}}{\frac{8}{7}}=\frac{\left(1+\frac{1}{7^{2018}}\right).7}{8}\)