K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Ta có :

\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)

\(=ab^2+ac^2+abc+bc^2+a^2b+a^2c+b^2c+abc\)

\(=\left(ab^2+a^2b+abc\right)+\left(bc^2+b^2c+abc\right)+\left(ac^2+a^2c+abc\right)\)

\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+b+c\right)\)

\(=\left(ab+bc+ac\right)\left(a+b+c\right)\)

15 tháng 10 2016

Thanks rat nhieu

27 tháng 8 2017

=(a+b+c)(a2+b2+c2−ab−bc−ca)

=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)

=(a+b)3+c3−3ab(a+b+c)

=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b

a3+b3+c3−3abc

27 tháng 8 2020

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(Vt\ge0\left(\forall a,b,c\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)

27 tháng 8 2020

Ta có : a2 + b2 + c2 = ab + bc + ca

=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

= (a2 - 2ab + b2) +  (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

=> (a - b)2 + (b - c)2 + (c - a)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)

b) Ta có :  2(x2 + t2) + (y + t)(y - t) = 2x(y + t)

=> 2x2 + 2t2 + y2 - t2 = 2xy + 2t

=> 2x2 + t2 + y2 = 2xt + 2xy

=> 2x2 + t2 + y2 - 2xt - 2xy = 0

=> (x2 - 2xy + y2) + (x2 + t2 - 2xt)  = 0

=> (x - y)2 + (x - t)2 = 0

=> \(\hept{\begin{cases}x-y=0\\x-t=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=t\end{cases}}\Rightarrow x=y=t\left(\text{đpcm}\right)\)

c) Ta có a + b + c = 0 

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

=> a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> a2 + b2 + c2 = 0

=> a = b = c = 0

Khi đó A = (0 - 1)2003 + 02004 + (0 + 1)2005

= - 1 + 0 + 1 = 0

Vậy A = 0

5 tháng 11 2018

Bài 1

a, Ta có

A = x2 + 6x + 13

⇒ A = (x2 + 6x + 9) + 4

⇒ A = (x + 3)2 + 4

Vì (x + 3)2 ≥ 0 với ∀ x ∈ R

⇒ (x + 3)2 + 4 ≥ 4 > 0 với ∀ x ∈ R

⇒ A > 0 với ∀ x ∈ R (đpcm)

b, B = 2x2 + 4y2 - 4x + 4xy + 13

⇒ B = (2x2 - 4x + 2) + (4y2 + 4xy + 1) + 8

⇒ B = 2 (x2 - 2x + 1) + (2y + 1)2 + 8

⇒ B = 2 (x - 1)2 + (2y + 1)2 + 8

\(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\text{ với ∀ x ∈ R}\\\left(2y+1\right)^2\ge0\text{ với ∀ y ∈ R}\end{matrix}\right.\)

⇒ 2 (x - 1)2 + (2y + 1)2 ≥ 0 với ∀ x, y ∈ R

⇒ 2 (x - 1)2 + (2y + 1)2 + 8 ≥ 8 với ∀ x, y ∈ R

⇒ B ≥ 8 với ∀ x, y ∈ R

Dấu " = " xảy ra

⇒ 2 (x - 1)2 + (2y + 1)2 = 0

\(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\text{ với ∀ x ∈ R}\\\left(2y+1\right)^2\ge0\text{ với ∀ y ∈ R}\end{matrix}\right.\)

nên : Để 2 (x - 1)2 + (2y + 1)2 = 0

\(\left\{{}\begin{matrix}2\left(x-1\right)^2=0\text{ }\\\left(2y+1\right)^2=0\text{ }\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0+1\\2y=0-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\2y=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của B là 8 tại \(\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)

Chúc bạn học tốt!!!

5 tháng 11 2018

cảm ơn bn nhiều nha

1 tháng 2 2020

\(A=25x^2-20x+7\)

\(\Leftrightarrow A=\left(5x-2\right)^2+3\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow5x-2=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(minA=3\Leftrightarrow x=\frac{2}{5}\)

\(B=-x^2+2x-2\)

\(\Leftrightarrow B=-\left(x^2-2x+1\right)-3\)

\(\Leftrightarrow B=-\left(x-1\right)^2-3\le-3\)

Dấu " = " xảy ra \(\Leftrightarrow x=1\)

Vậy \(maxB=-3\Leftrightarrow x=1\)

\(C=9x^2-12x\)

\(\Leftrightarrow C=\left(9x^2-12x+4\right)-4\)

\(\Leftrightarrow C=\left(3x-2\right)^2-4\ge-4\)

Dấu " = " xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy \(minC=-4\Leftrightarrow x=\frac{2}{3}\)

\(D=3-10x^2-4xy-4y^2\)

\(\Leftrightarrow D=-\left(4y^2+4xy+x^2+9x^2\right)-3\)

\(\Leftrightarrow D=-\left[\left(2y-x\right)^2+3x^2\right]-3\le-3\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2y-x=0\\3x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}\)

Vậy \(maxD=-3\Leftrightarrow x=y=0\)

\(E=4x-x^2+1\)

\(\Leftrightarrow E=-\left(x^2-4x+4\right)+5\)

\(\Leftrightarrow E=-\left(x-2\right)^2+5\le5\)

Dấu " = " xảy ra \(\Leftrightarrow x=2\)

Vậy \(maxE=5\Leftrightarrow x=2\)

2 tháng 5 2017

Vào câu hỏi tương tự nhé. Cứ kéo xuống sẽ thấy..

e) Ta có: \(E=\left(3x+2\right)\left(3x-5\right)\left(x-1\right)\left(9x+10\right)+24x^2\)

\(=\left(9x^2-15x+6x-10\right)\left(9x^2+10x-9x-10\right)+24x^2\)

\(=\left(9x^2-10-9x\right)\left(9x^2-10+x\right)+24x^2\)

\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)-9x^2+24x^2\)

\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)+15x^2\)

\(=\left(9x^2-10\right)^2-3x\left(9x^2-10\right)-5x\left(9x^2-10\right)+15x^2\)

\(=\left(9x^2-10\right)\left(9x^2-3x-10\right)-5x\left(9x^2-10-3x\right)\)

\(=\left(9x^2-3x-10\right)\left(9x^2-5x-10\right)\)