Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: \(8n^2-4n+1⋮2n+1\)
\(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;2;-3\right\}\)
b: Ta có: \(3n^3+8n^2+15n⋮3n-1\)
\(\Leftrightarrow3n^3-n^2+9n^2-3n+18n-6+6⋮3n-1\)
\(\Leftrightarrow3n-1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;1\right\}\)
a)Gọi \(UCLN\left(6n+1;8n+1\right)=d\)
Ta có:
\(\left[4\left(6n+1\right)\right]-\left[3\left(8n+1\right)\right]⋮d\)
\(\Rightarrow\left[24n+4\right]-\left[24n+3\right]⋮d\)
\(\Rightarrow1⋮d\).Suy ra 24n+4 và 24n+3 là 2 số nguyên tố cùng nhau
Vậy \(A=\frac{6n+1}{8n+1}\) là phân số tối giản
b)tương tự
Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)
\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)
\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)
\(=>19n-5⋮d\)
do 19 zà 5 là số nguyên tố =>không chia hết cho d
=>p.số tối giản
Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
A = 8n+1 - 23( 8n - 3 )
= ( 23 )n+1 - 23[ ( 23 )n - 3 ]
= 23n+3 - 23( 23n - 3 )
= 23n+3 - 23n+3 + 23.3
= 23.3 = 24
B = 9n - 32n-1( 3 + 3n )
= ( 32 )n - 32n - 33n - 1
= 32n - 32n - 33n - 1
= -33n-1