K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

1 tháng 3 2020

a) 3x(x - 1) + 2(x - 1) = 0

<=> (3x + 2)(x - 1) = 0

<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)

Vậy S = {-2/3; 1}

b) x2 - 1 - (x + 5)(2 - x) = 0

<=> x2 - 1 - 2x + x2 - 10 + 5x = 0

<=> 2x2 + 3x - 11 = 0

<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0

<=> (x + 3/4)2 - 97/16 = 0

<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)

Vậy S = {\(\frac{\sqrt{97}-3}{4}\)\(-\frac{\sqrt{97}-3}{4}\)

d) x(2x - 3) - 4x + 6 = 0

<=> x(2x - 3) - 2(2x - 3) = 0

<=> (x - 2)(2x - 3) = 0

<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)

Vậy  S = {2; 3/2}

e)  x3 - 1 = x(x - 1)

<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0

<=> (x - 1)(x2 + x +  1 - x) = 0

<=> (x - 1)(x2 + 1) = 0

<=> x - 1 = 0

<=> x = 1

Vậy S = {1}

f) (2x - 5)2 - x2 - 4x - 4 = 0

<=> (2x - 5)2 - (x + 2)2 = 0

<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

<=> (x - 7)(3x - 3) = 0

<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)

Vậy S = {7; 1}

h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0

<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0

<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0

<=> (x - 2)(x - 6) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)

Vậy S = {2; 6}

\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)

\(3x.x-3x+2x-2=0\)

\(2x-2=0\)

\(2x=2\)

\(x=1\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩaa) A = 4√25x4−83√9x4−43x√9x354(x>0)425x4−839x4−43x9x354(x>0)b) B = x2+34√1−4x+4x2−32(x≤12)x2+341−4x+4x2−32(x≤12)Bài 3 : Giải PTa) 12√x−1−32√9x−9+24√x−164=−1712x−1−329x−9+24x−164=−17b) √4x2−9=2√2x+34x2−9=22x+3c) 3x−7√x+4=03x−7x+4=0Bài 4 : Trục căn thức mẫu và rút...
Đọc tiếp

Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩa

a) A = 4√25x4−83√9x4−43x√9x354(x>0)425x4−839x4−43x9x354(x>0)

b) B = x2+34√1−4x+4x2−32(x≤12)x2+341−4x+4x2−32(x≤12)

Bài 3 : Giải PT

a) 12√x−1−32√9x−9+24√x−164=−1712x−1−329x−9+24x−164=−17

b) √4x2−9=2√2x+34x2−9=22x+3

c) 3x−7√x+4=03x−7x+4=0

Bài 4 : Trục căn thức mẫu và rút gọn

a) 9√393

b) 3√5−√235−2

c) √2+1√2−12+12−1

d) 17+4√3+17−4√317+43+17−43

Vậy thoiiiii :))) Giúp em với mọi người :")))

Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩa

a) A = 4√25x4−83√9x4−43x√9x354(x>0)425x4−839x4−43x9x354(x>0)

b) B = x2+34√1−4x+4x2−32(x≤12)x2+341−4x+4x2−32(x≤12)

Bài 3 : Giải PT

a) 12√x−1−32√9x−9+24√x−164=−1712x−1−329x−9+24x−164=−17

b) √4x2−9=2√2x+34x2−9=22x+3

c) 3x−7√x+4=03x−7x+4=0

Bài 4 : Trục căn thức mẫu và rút gọn

a) 9√393

b) 3√5−√235−2

c) √2+1√2−12+12−1

d) 17+4√3+17−4√317+43+17−43

Vậy thoiiiii :))) Giúp em với mọi người :")))

0
28 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)

\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) Để P nguyên

\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)

\(\Leftrightarrow3⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)

Mà \(\sqrt{x}\ge0,\forall x\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy để P nguyên \(\Leftrightarrow x=1\)

1 tháng 8 2017

a) Để \(\sqrt{\dfrac{3}{x-5}}\) có nghĩa thì :

\(\dfrac{3}{x-5}\ge0\) mà 3 > 0 nên => x - 5 > 0 <=> x > 5

b) Để \(\sqrt{\dfrac{x-3}{x+5}}\) có nghĩa thì :

\(\dfrac{x-3}{x+5}\ge0\) ; x \(\ne-5\)

Ta có bảng xét dấu :

x x-3 x+5 (x-3)/(x+5) -5 3 0 0 0 - - + - + + + - +

=> x \(\le-5\) Hoặc x \(\ge3\)

c) Để \(A=\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\) có nghĩa thì :

x - 3 \(\ge\) 0 <=> x \(\ge3\)

\(\dfrac{1}{4-x}\ge0\) mà 1 > 0 nên => 4 - x > 0 <=> x < 4

d) Để \(B=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\) = \(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{\left(x-2\right)^2}}\) có nghĩa thì :

\(x-1\ge0< =>x\ge1\)

\(\dfrac{2}{\left|x-2\right|}\ge0\) Mà 2 > 0 nên => | x - 2 | >0 <=> x -2 \(\ge\) 0 <=> x \(\ge2\)

e) \(\text{Đ}\text{ể}:C=\sqrt{\dfrac{-3}{x-5}}\) có nghĩa thì :

\(\dfrac{-3}{x-5}\ge0\)

Mà -3 < 0 nên => x -5 < 0 <=> x < 5

F) Để \(D=3+\sqrt{x^2-9}\) có nghĩa thì :

\(\sqrt{x^2-9}=\sqrt{\left(x+3\right)\left(x-3\right)}< =>\left(x+3\right)\left(x-3\right)\ge0\)

Ta có bảng xét dấu :

x x+3 x-3 tích 0 0 0 0 - + + - - + -3 3 + - +

=> x \(\le-3\) Hoặc x \(\ge3\)

g) Để \(E=\dfrac{1}{1-\sqrt{x-1}}\) có nghĩa thì :

x -1 \(\ge0\) mà 1 > 0 nên => x - 1 > 0 <=> x > 1

h) Để H = \(\sqrt{x^2+2x+3}=\sqrt{\left(x+2\right)\left(x+3\right)}\) có nghĩa thì :

( x + 2)(x + 3) \(\ge0\)

Ta có bảng xét dấu :

x x+2 x+3 tích -3 -2 0 0 0 0 - - + - + + + - +

=> \(x\le-3\) Hoặc x \(\ge-2\)

1 tháng 8 2017

a )\(\dfrac{\sqrt{3}}{x-5}\)

\(\sqrt{3}\) > 0

<=> x-5 >0

=>x > 5