Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)
\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) Để P nguyên
\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)
\(\Leftrightarrow3⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)
Mà \(\sqrt{x}\ge0,\forall x\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy để P nguyên \(\Leftrightarrow x=1\)
a) Để \(\sqrt{\dfrac{3}{x-5}}\) có nghĩa thì :
\(\dfrac{3}{x-5}\ge0\) mà 3 > 0 nên => x - 5 > 0 <=> x > 5
b) Để \(\sqrt{\dfrac{x-3}{x+5}}\) có nghĩa thì :
\(\dfrac{x-3}{x+5}\ge0\) ; x \(\ne-5\)
Ta có bảng xét dấu :
x x-3 x+5 (x-3)/(x+5) -5 3 0 0 0 - - + - + + + - +
=> x \(\le-5\) Hoặc x \(\ge3\)
c) Để \(A=\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\) có nghĩa thì :
x - 3 \(\ge\) 0 <=> x \(\ge3\)
\(\dfrac{1}{4-x}\ge0\) mà 1 > 0 nên => 4 - x > 0 <=> x < 4
d) Để \(B=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\) = \(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{\left(x-2\right)^2}}\) có nghĩa thì :
\(x-1\ge0< =>x\ge1\)
\(\dfrac{2}{\left|x-2\right|}\ge0\) Mà 2 > 0 nên => | x - 2 | >0 <=> x -2 \(\ge\) 0 <=> x \(\ge2\)
e) \(\text{Đ}\text{ể}:C=\sqrt{\dfrac{-3}{x-5}}\) có nghĩa thì :
\(\dfrac{-3}{x-5}\ge0\)
Mà -3 < 0 nên => x -5 < 0 <=> x < 5
F) Để \(D=3+\sqrt{x^2-9}\) có nghĩa thì :
\(\sqrt{x^2-9}=\sqrt{\left(x+3\right)\left(x-3\right)}< =>\left(x+3\right)\left(x-3\right)\ge0\)
Ta có bảng xét dấu :
x x+3 x-3 tích 0 0 0 0 - + + - - + -3 3 + - +
=> x \(\le-3\) Hoặc x \(\ge3\)
g) Để \(E=\dfrac{1}{1-\sqrt{x-1}}\) có nghĩa thì :
x -1 \(\ge0\) mà 1 > 0 nên => x - 1 > 0 <=> x > 1
h) Để H = \(\sqrt{x^2+2x+3}=\sqrt{\left(x+2\right)\left(x+3\right)}\) có nghĩa thì :
( x + 2)(x + 3) \(\ge0\)
Ta có bảng xét dấu :
x x+2 x+3 tích -3 -2 0 0 0 0 - - + - + + + - +
=> \(x\le-3\) Hoặc x \(\ge-2\)
a )\(\dfrac{\sqrt{3}}{x-5}\)
vì \(\sqrt{3}\) > 0
<=> x-5 >0
=>x > 5