Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(15-6-\dfrac{13}{18}\right):\dfrac{298}{27}-\dfrac{17}{8}:\dfrac{51}{40}\)
\(=\dfrac{149}{18}\cdot\dfrac{27}{298}-\dfrac{5}{3}=\dfrac{3}{2}-\dfrac{5}{3}=\dfrac{9-10}{6}=\dfrac{-1}{6}\)
b: \(=\dfrac{-16}{5}\cdot\dfrac{-15}{64}+\dfrac{-22}{15}:\dfrac{11}{2}\)
\(=\dfrac{3}{4}-\dfrac{4}{15}=\dfrac{29}{60}\)
c: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=\dfrac{-7}{9}+\dfrac{7}{9}+5=5\)
d: \(=\dfrac{1}{2}\cdot\dfrac{4}{3}\cdot10\cdot\dfrac{1}{5}\cdot\dfrac{3}{4}=1\)
e: \(=\dfrac{4}{25}+\dfrac{11}{2}\cdot\dfrac{5}{2}+\dfrac{-23}{4}=\dfrac{204}{25}\)
Câu 3:
a) \(\dfrac{12}{36}=\dfrac{12:12}{36:12}=\dfrac{1}{3}\)
\(\dfrac{-16}{20}=\dfrac{-16:4}{20:4}=\dfrac{-4}{5}\)
b) \(\dfrac{21}{105}=\dfrac{21:21}{105:21}=\dfrac{1}{5}\)
\(\dfrac{35}{150}=\dfrac{35:5}{150:5}=\dfrac{7}{30}\)
Câu 4:
a) \(\dfrac{3}{10}+\dfrac{5}{10}=\dfrac{3+5}{10}=\dfrac{8}{10}=\dfrac{4}{5}\)
b) Ta có: \(\left(-27\right)\cdot36+64\cdot\left(-27\right)+23\cdot\left(-100\right)\)
\(=\left(-27\right)\cdot\left(64+36\right)+23\cdot\left(-100\right)\)
\(=-27\cdot100-23\cdot100\)
\(=100\left(-27-23\right)\)
\(=-50\cdot100=-5000\)
c) \(\dfrac{5}{8}+\dfrac{3}{12}=\dfrac{15}{24}+\dfrac{6}{24}=\dfrac{21}{24}=\dfrac{7}{8}\)
d) Ta có: \(\dfrac{-2}{17}+\dfrac{3}{19}+\dfrac{-15}{17}+\dfrac{16}{19}+\dfrac{5}{6}\)
\(=\left(-\dfrac{2}{17}+\dfrac{-15}{17}\right)+\left(\dfrac{3}{19}+\dfrac{16}{19}\right)+\dfrac{5}{6}\)
\(=-1+1+\dfrac{5}{6}\)
\(=\dfrac{5}{6}\)
\(A=\frac{1}{1\cdot2}+\frac{2}{2\cdot4}+\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+...+\frac{10}{46\cdot56}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{56}\)
\(A=1-\frac{1}{56}\)
\(A=\frac{55}{56}\)
\(B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(B=\frac{1}{3}-\frac{1}{27}\)
\(B=\frac{8}{27}\)
\(C=\frac{4}{3\cdot6}+\frac{4}{6\cdot9}+\frac{4}{9\cdot12}+...+\frac{4}{99\cdot102}\)
\(C=\frac{4}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{99\cdot102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\cdot\frac{33}{102}\)
\(C=\frac{22}{51}\)
a: \(=\dfrac{20\left(1-12\right)}{30\left(-1-10\right)}=\dfrac{2}{3}\)
b: \(=\dfrac{11^9\cdot3^{18}}{3^{18}\cdot11^{11}}=\dfrac{1}{121}\)
a: \(=\dfrac{20\left(1-12\right)}{30\left(-1-10\right)}=\dfrac{20}{30}=\dfrac{2}{3}\)
b: \(=\dfrac{11^9\cdot3^{18}}{3^{10}\cdot11^{11}\cdot3^8}=\dfrac{1}{121}\)
\(1\)) \(5-\left(10-x\right)=7\)
\(10-x=5-7\)
\(10-x=-2\)
\(x=10-\left(-2\right)\)
\(x=12\)
\(2\)) \(-32-\left(x-5\right)=0\)
\(x-5=-32-0\)
\(x-5=-32\)
\(x=-32+5\)
\(x=-27\)
1+2+3+4+5+6+7+8+9+10=55
11+12+13+14+15+16+17+18+19+20=155
1+2+3+4+5+6+7+8+9+10+11+12+13+14 +15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30-50-53=362
a,\(4+6+8+...+40=\frac{\left(40+4\right).[\left(40-4\right):2+1]}{2}=\frac{44.19}{2}=418\)
b,\(3+7+11+...+31=\frac{\left(31+3\right).8}{2}=\frac{34.8}{2}=136\)
c,\(5+10+15+...+105=\frac{\left(105+5\right).[\left(105-5\right):5+1]}{2}=\frac{110.21}{2}=1155\)
rút gọn
a, 4+6+8+...+40
\(=\frac{\left[\left(40-4\right):2\right].\left(40+2\right)}{2}=\frac{756}{2}=378\)
b, 3 + 7 + 11 + 15 + 19 + 23 + 27 + 31
\(=\frac{\left[\left(31-3\right):4\right].\left(31+3\right)}{2}=\frac{238}{2}=119\)
c, 5 + 10 + 15 +...+105
\(=\frac{\left[\left(105-5\right):5\right].\left(105+5\right)}{2}=\frac{2200}{2}=1100\)
Study well