Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\)\(n^5+10n^4-5n^3-10n^2+4n=n\left(n+1\right)\left(n-1\right)\left(n^2+10n-4\right)\)
✱A chia hết cho 5 vì:
n luôn có dạng 5k; 5k+1; 5k+2; 5k+3; 5k+4 (k ∈ N)
*Với n=5k thì A⋮5
*Với n=5k+1 thì \(\left(n-1\right)\)⋮5 suy ra A⋮5
*Với n=5k+4 thì \(\left(n+1\right)\)⋮5 suy ra A⋮5
*Với n=5k+2 hoặc n=5k+3 thì \(\left(n^2+10n-4\right)\)⋮5 suy ra A⋮5
✱A chia hết cho 3 vì trong 3 số liên tiếp luôn có một số chia hết cho 3
✱A chia hết cho 8 vì:
*Với n=2m (m ∈ N) thì n⋮2 ; \(\left(n^2+10n-4\right)\)⋮4 suy ra A⋮8
*Với n=2m+1 (m ∈ N) thì \(\left(n+1\right);\left(n-1\right)\) là 2 số chẵn liên tiếp suy ra A⋮8
✽Vì 8,3,5 là 3 số nguyên tố cùng nhau nên A⋮120
Ta có:\(n^2+10n+36=a^2\)
\(\Rightarrow n^2+10n+25+11=a^2\)
\(\Rightarrow\left(n+5\right)^2+11=a^2\)
\(\Rightarrow\left(n+5\right)^2-a^2=-11\)
\(\Rightarrow\left(n+5-a\right)\left(n+5+a\right)=-11\)
\(\Rightarrow\left(n+5-a\right)\left(n+5+a\right)=-1.11=1.-11\)
Ta có 2 TH sau
TH1:\(\hept{\begin{cases}n+5-a=-1\\n+5+a=11\end{cases}\Rightarrow2n+10=10\Rightarrow n=\frac{10-10}{2}=0}\)(nhận)
TH2:\(\hept{\begin{cases}n+5-a=1\\n+5+a=-11\end{cases}}\Rightarrow2n+10=-10\Rightarrow n=\frac{-10-10}{2}=-10\)(loại)
a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)
Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4
b) Cho n-1=0 => n=1
Sau đó thay vào biểu thức 10n2+n -10 sẽ tìm ra n=1
Cho mình nha!!! <3
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
a)10n+1-6.10n
=10n.10-6.10n
=10n(10-6)
=10n.4
b)90.10n-10n+2+10n+1
=90.10n-10n.100+10n+10
=10n(90-100+10)
=10n.0
=0
a, \(10^{n+1}-6.10^n\)
= \(10^n.10-6.10^n\)
=\(10^n.\left(10-6\right)\)
=\(10^n.4\)
b, \(90.10^n-10^{n+2}-10^{n+1}\)
= \(90.10^n-10^n.10^2-10^n.10\)
= \(10^n.\left(90-10^2-10\right)\)
= \(10^n.\left(-20\right)\)
nhớ k cho mik nha!!!!!!!!!!!!!