K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5^1+5^2+5^3+5^4+...+5^{51}\)
\(4A=5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
b/
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\frac{1}{2}B=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{100}\)
\(\frac{1}{2}B=B-\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\)
\(B=\frac{1}{2}B\cdot2=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)
\(B=1-\frac{1}{2^{99}}\)
 

13 tháng 3 2016

A=\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

=>2A=1+\(\frac{1}{2}+...+\frac{1}{2^{98}}\)

=>2A-A=A=\(\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)

=>A=\(1-\frac{1}{2^{99}}\)

13 tháng 3 2016

mình chịu thua vì mình cũng gặp câu này mà ko có lời giải

20 tháng 9 2016

21=45

3 tháng 2 2017

ai trả lời đúng k

3 tháng 2 2017

có cách làm nữa nha

18 tháng 3 2019

A=\(\left(\frac{1}{2^2}-1\right)\)\(\left(\frac{1}{3^2}-1\right)\)\(\left(\frac{1}{4^2}-1\right)\)...\(\left(\frac{1}{98^2}-1\right)\)\(\left(\frac{1}{99^2}-1\right)\)

Do tích A có(99-2)+1=98 thừa số nguyên âm nên tích A dương

A=\(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\)...\(\frac{97.99}{98^2}\).\(\frac{98.100}{99^2}\)=\(\frac{1.2.3.4.5...97.98.99.100}{2^2.3^3.4^2...98^2.99^2}\)

=\(\frac{1.2.3.4...98}{2.3.4...98.99}.\frac{3.4.5...99.100}{2.3.4...98.99}=\frac{1}{99}.\frac{100}{2}=\frac{50}{99}\)

14 tháng 3 2016

đặt A=1/2+(1/2)^2+(1/2)^3+...+(1/2)^98+(1/2)^99+(1/2)^99

=>A=1/2+12/22+13/23+...+198/298+199/299+199/299

=>A=1/2+1/22+1/23+...+1/298+1/299+1/299

=>2A-1/299=1+1/2+1/22+...+1/298

=>(2A-1/299)-(A-1/299)=(1+1/2+1/22+...+1/298)-(1/2+1/22+1/23+...+1/298+1/299)

=>(2A-1/299)-(A-1/299)=1-1/299

=>A=1-1/299 +1/299=1

vậy A=1

chắc thế

14 tháng 3 2016

cái phân số cuối sai thì phải 

2 tháng 12 2019

Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{99}}\)

\(\Rightarrow A=1-\frac{1}{2^{99}}=\frac{2^{99}-1}{2^{99}}\)

14 tháng 9 2017

a) \(\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{8}\right)\)

=   \(\frac{1}{3}-\left(\frac{4}{8}+\frac{1}{8}\right)\)

=     \(\frac{1}{3}-\frac{5}{8}\)

\(\frac{8}{24}-\frac{15}{24}\)

\(\frac{-7}{24}\)

b) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{13}+\frac{1}{8}\)

\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)\)\(\frac{1}{13}\)

\(\left(\frac{4}{8}-\frac{2}{8}+\frac{1}{8}\right)+\frac{1}{13}\)

=                 \(\frac{1}{8}+\frac{1}{13}\)

=                 \(\frac{13}{104}+\frac{8}{104}\)

=                        \(\frac{23}{104}\)

c) \(13\frac{2}{7}:\left(\frac{-8}{9}\right)+2\frac{5}{7}:\left(\frac{-8}{9}\right)\)

\(\left(13\frac{2}{7}+2\frac{5}{7}\right):\left(\frac{-8}{9}\right)\)

=         \(16:\left(\frac{-8}{9}\right)\)

=         -18