Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4x^2(5x^3 - 2x + 3)
= 20x^5 - 8x^3 + 12x^2
b) 2u(1 + u - v) - v(1 - 2u + v)
= 2u + 2u^2 - v - v^2
a, \(x^2+2x\left(y+1\right)+y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1=\left(x+y+1\right)^2\)
b, \(u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2\)
\(=u^2+v^2+2u+2v+2uv+2u+2v+2+2\)
\(=\left(u^2+2uv+v^2\right)+\left(4u+4v\right)+4\)
\(=\left(u+v\right)^2+4\left(u+v\right)+2^2=\left(u+v+2\right)^2\)
1.
a) \(A=x^2+2x\left(y+1\right)+y^2+2y+1\)
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(A=\left(x+y+1\right)^2\)
b) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2\)\(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+1+1\)\(B=\left(u^2+2u+1\right)+2\left(u+1\right)\left(v+1\right)+\left(v^2+2v+1\right)\)\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2\)\(B=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
tik mik nha !!!
a) 3 u 2 − 8 u + 3 ( u 2 + 1 ) ( u − 1 ) b) 1 − 4 u 4 ( 4 u + 1 )
a.) \(A=x^2+y^2+1+2xy+2x+2y=\left(x+y+1\right)^2.\)
b.) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2=u^2+2u+1+2\left(u+1\right)\left(v+1\right)+v^2+2v+1\)
\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
Giả sử số tự nhiên a chia cho 7 dư 3. CMR a chia cho 7 dư 2
a) Đặt A = u2 + v2 - 2u + 3v + 15
= (u2 - 2u + 1) + (v2 + 3v + 9/4) + 47/4
= (u - 1)2 + (v + 3/2)2 + 47/4 \(\ge\frac{47}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}u-1=0\\v+\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}u=1\\v=-\frac{3}{2}\end{cases}}\)
Vậy Min A = 47/4 <=> u = 1 ; y = -3/2
(u-1)^2 + (v+3/2)^2 + 11,75 \(\ge\)11,75
''='' <=> u = 1, v = -3/2
=> Min = 11,75 <=> u = 1, v = -3/2
1.
a. \(x^2-4x\Rightarrow x^2-4x+4=\left(x-2\right)^2\)
b. \(x^2+9\Rightarrow x^2+9+6x=\left(x+3\right)^2\)
c. \(x^2+xy+y^2\Rightarrow x^2+xy+y^2+xy=\left(x+y\right)^2\)
d. \(x^2-x\Rightarrow x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
2u(1+u-v) - v(1-2u+v)
= 2u + 2u^2 - 2uv - v + 2uv - v^2
= 2u + 2u^2 - v - v^2
= 2u(1+u) - v(1+v)