Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1+2^2+2^4+...+2^{2008}\)
\(\Rightarrow4C=2^2+2^4+...+2^{2010}\)
\(\Rightarrow4C-C=\left(2^2+2^4+...+2^{2010}\right)-\left(1+2^2+2^4+...+2^{2008}\right)\)
\(3C=2^{2010}-1\)
\(C=\frac{2^{2010}-1}{3}\)
\(C=1+2^2+2^4+....+2^{2008}\)
\(\Rightarrow4C=2^2+2^4+.....+2^{2010}\)
\(\Rightarrow3C=4C-C=\left(2^2+2^4+...+2^{2010}\right)-\left(1+2^2+.....+2^{2008}\right)\)
\(\Rightarrow3C=2^{2010}-1\)
\(\Rightarrow C=\frac{2^{2010}-1}{3}\)
Đặt \(A=1+7^2+7^3+7^4+...+7^{99}\)
\(\Rightarrow7A=7\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow7A=7+7^3+7^4+7^5+...+7^{100}\)
\(\Rightarrow7A-A=\left(7+7^3+7^4+7^5+...+7^{100}\right)-\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow6A=7^{100}-1\)
\(\Rightarrow A=\frac{7^{100}-1}{6}\)
Bài này có rắc rối đâu em?
Thực hiện phép tính trong ngoặc lại là ra dạng (n+1)/n.
1 dãy các số liên tục kéo dài nhân với nhau thì triệt tiêu là xong!
Chúc em học tốt!
A = 1 + (1+ 1).2 + (1 + 2).3 + (1+3).4 + ...+ (1 + n-1). n
A = 1 + (2+1.2) + (3+ 2.3) + (4 + 3.4) + ....+ ( n + (n -1).n)
A = (1+ 2 + 3 + 4 + ...+ n) + (1.2 + 2.3 + 3.4 + .....+ (n-1).n)
Tính B = 1+ 2+ 3 + ...+ n = (n +1).n/ 2
C = 1.2+ 2.3 + 3.4 + ...+ (n-1).n
=> 3.C = 1.2.3 + 2.3.3 + 3.4.3 + ...+ (n-1).n.3
3C = 1.2.3 + 2.3. (4 -1) + 3.4.(5 - 2) + ... + (n -1).n [(n+ 1) - (n -2)]
3C = [1.2.3 + 2.3.4 + ....+ (n-1).n.(n +1)] - (1.2.3 + 2.3.4 + ... + (n-2)(n -1).n)
3C = (n -1).n (n +1) => C = (n -1).n.(n +1)/ 3
Vậy A = (n +1).n/ 2 + (n -1).n(n +1)/3
bài làm
A = 1 + (1+ 1).2 + (1 + 2).3 + (1+3).4 + ...+ (1 + n-1). n
A = 1 + (2+1.2) + (3+ 2.3) + (4 + 3.4) + ....+ ( n + (n -1).n)
A = (1+ 2 + 3 + 4 + ...+ n) + (1.2 + 2.3 + 3.4 + .....+ (n-1).n)
B = 1+ 2+ 3 + ...+ n = (n +1).n/ 2
C = 1.2+ 2.3 + 3.4 + ...+ (n-1).n
=> 3.C = 1.2.3 + 2.3.3 + 3.4.3 + ...+ (n-1).n.3
3C = 1.2.3 + 2.3. (4 -1) + 3.4.(5 - 2) + ... + (n -1).n [(n+ 1) - (n -2)]
3C = [1.2.3 + 2.3.4 + ....+ (n-1).n.(n +1)] - (1.2.3 + 2.3.4 + ... + (n-2)(n -1).n)
3C = (n -1).n (n +1)
=> C = (n -1).n.(n +1)/ 3
Vậy............
hok tốt
\(7M=7+7^2+7^3+...+7^{101}\)
\(7M-M=\left(7+7^2+...+7^{101}\right)-\left(1+7+..+7^{100}\right)\)
\(6M=7^{101}-1\)
\(M=\frac{7^{101}-1}{6}\)
\(C=1+2^2+2^4+...+2^{2008}\)
\(4C=2^2+2^4+2^6+...+2^{2010}\)
\(4C-C=\left(2^2+2^4+2^6+...+2^{2010}\right)-\left(1+2^2+2^4+...+2^{2008}\right)\)
\(3C=2^{2010}-1\)
\(C=\frac{2^{2010}-1}{3}\)
\(C=1+2^2+2^4+...+2^{2008}\)
\(\Rightarrow4C=2^2+2^4+...+2^{2010}\)
\(\Rightarrow4C-C=\left(2^2+2^4+...+2^{2010}\right)-\left(1+2^2+2^4+...+2^{2008}\right)\)
\(\Rightarrow3C=2^{2010}-1\)
\(\Rightarrow C=\frac{2^{2010}-1}{3}\)