K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

a) \(\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{4-2\sqrt{3}}}{2}=\frac{\sqrt{3-2\sqrt{3}+1}}{2}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}\)

\(=\frac{\left|\sqrt{3}-1\right|}{2}=\frac{\sqrt{3}-1}{2}\)

b) \(\sqrt{8}\cdot\sqrt{3-\sqrt{5}}=\sqrt{4}\cdot\sqrt{6-2\sqrt{5}}=2\sqrt{5-2\sqrt{5}+1}=2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=2\cdot\left|\sqrt{5}-1\right|=2\left(\sqrt{5}-1\right)=2\sqrt{5}-2\)

29 tháng 8 2020

tks kiu

18 tháng 9 2019

d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)

\(\Leftrightarrow x^3=6-5x\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow x=1\)

19 tháng 9 2019

c/

\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=3-1=2\)

26 tháng 10 2023

a: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

b: \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)

\(=3+\sqrt{5}+3-\sqrt{5}=6\)

c: \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)

\(=\dfrac{3\left(2\sqrt{3}-3\right)+3\left(2\sqrt{3}+3\right)}{12-9}\)

\(=2\sqrt{3}-3+2\sqrt{3}+3=4\sqrt{3}\)

d: \(\sqrt{\left(\sqrt{3}+4\right)\cdot\sqrt{19-8\sqrt{3}}+3}\)

\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)

\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\left(4-\sqrt{3}\right)+3}\)

\(=\sqrt{16-3+3}=\sqrt{16}=4\)

e: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)

\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{3}\)

\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)

a: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-3\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)

\(=\sqrt{3}-3\sqrt{3}+\sqrt{3}=-\sqrt{3}\)

b: \(=\left(\left(2-2\sqrt{5}\right)\left(\sqrt{5}+2\right)+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(2\sqrt{5}+4-10-4\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(-2\sqrt{5}+\sqrt{3}-6\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=-20+2\sqrt{15}+\sqrt{15}-3-6\sqrt{5}+6\sqrt{3}\)

\(=-23+3\sqrt{15}-6\sqrt{5}+6\sqrt{3}\)

9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)

10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)

=9-3=6

13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)

\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)

NV
17 tháng 6 2019

\(A=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\left(5-2\sqrt{6}\right)^2}{9\sqrt{3}-11\sqrt{2}}\)

\(=\left(\sqrt{3}+\sqrt{2}\right)\left(9\sqrt{3}+11\sqrt{3}\right)\left(5-2\sqrt{6}\right)^2\)

\(=\left(49+20\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2=\left(5+2\sqrt{6}\right)^2\left(5-2\sqrt{6}\right)^2=1\)

\(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(=\sqrt{4+5}=3\)

\(A=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)

1 tháng 7 2016

câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :

\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)      

\(=3-\sqrt{6}+2\sqrt{6}-3\)   ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )

\(=\sqrt{6}\)

 

18 tháng 6 2017

sai ngay từ đầu limdim

30 tháng 9 2023

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|\)

\(=\sqrt{2}-1+2-\sqrt{2}\)

\(=1\)

b) \(\sqrt{33-12\sqrt{6}}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2\sqrt{6}\right)^2-2\cdot2\sqrt{6}\cdot3+3^2}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2\sqrt{6}-3\right)^2}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)

\(=\left|2\sqrt{6}-3\right|-\left|5-2\sqrt{6}\right|\)

\(=2\sqrt{6}-3-5+2\sqrt{6}\)

\(=4\sqrt{6}-8\)

c) \(\sqrt{7-2\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}+\sqrt{3^2-2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}+\sqrt{\left(3-\sqrt{6}\right)^2}\)

\(=\left|\sqrt{6}-1\right|+\left|3-\sqrt{6}\right|\)

\(=\sqrt{6}-1+3-\sqrt{6}\)

\(=2\)

30 tháng 9 2023

\(a,\sqrt{3-2\sqrt{2}}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1}+\left|2-\sqrt{2}\right|\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}+2-\sqrt{2}\)

\(=\left|\sqrt{2}-1\right|+2-\sqrt{2}\)

\(=\sqrt{2}-1+2-\sqrt{2}\)

\(=1\)

\(---\)

\(b,\sqrt{33-12\sqrt{6}}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2\sqrt{6}\right)^2-2\cdot2\sqrt{6}\cdot3+3^2}-\left|5-2\sqrt{6}\right|\)

\(=\sqrt{\left(2\sqrt{6}-3\right)^2}-5+2\sqrt{6}\)

\(=\left|2\sqrt{6}-3\right|-5+2\sqrt{6}\)

\(=2\sqrt{6}-3-5+2\sqrt{6}\)

\(=4\sqrt{6}-8\)

\(---\)

\(c,\sqrt{7-2\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}+\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot3+3^2}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}+\sqrt{\left(\sqrt{6}-3\right)^2}\)

\(=\left|\sqrt{6}-1\right|+\left|\sqrt{6}-3\right|\)

\(=\sqrt{6}-1+3-\sqrt{6}\)

\(=2\)

#\(Toru\)