Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{5}x^2y-10x^2y-\frac{1}{5}x^2y\)
\(=-10x^2y=-10.0,5^2.2=-5\)
b) \(5x^2y-7xy^2+5x^2y-10x^2y+5xy^2\)
\(=-2xy^2=-2.0,5.4=-44\)
Bài 1:
a) Ta có:
\(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
Lại có: \(x.y=84\)
\(\Rightarrow3k.7k=84\)
\(\Rightarrow21.k^2=84\)
\(\Rightarrow k^2=84:21\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2.\)
+ TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)
+ TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Bài 2:
a) Ta có:
Tham khảo nha:
Biến đổi biểu thức tương đương : (x^2 - 1) /2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : {1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Chúc bạn học có hiệu quả!
1. Tìm x
\(3x.\left(2x-\frac{3}{5}\right)=0\)
⇒ \(\left[{}\begin{matrix}3x=0\\2x-\frac{3}{5}=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=0:3\\2x=0+\frac{3}{5}=\frac{3}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=0\\x=\frac{3}{5}:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=0\\x=\frac{3}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{0;\frac{3}{10}\right\}.\)
2.
b)
TH1: \(a< b.\)
\(\Rightarrow2019a< 2019b\)
\(\Rightarrow ab+2019a< ab+2019b.\)
\(\Rightarrow a.\left(b+2019\right)< b.\left(a+2019\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+2019}{b+2019}.\)
TH2: \(a=b.\)
\(\Rightarrow\frac{a}{b}=\frac{a+2019}{b+2019}.\)
TH3: \(a>b.\)
\(\Rightarrow2019a>2019b.\)
\(\Rightarrow ab+2019a>ab+2019b\)
\(\Rightarrow a.\left(b+2019\right)>b.\left(a+2019\right).\)
\(\Rightarrow\frac{a}{b}>\frac{a+2019}{b+2019}.\)
Chúc bạn học tốt!
1
x . (2x - 3/ 5 ) = 0 : 3
2x - 3/ 5 = 0
2x = 0+3/5
x =3/ 5 : 2
x = 3/ 10
rất dễ nhưng bn tự làm đi đằng mình ghi xong có bạn khác giải rùi
a/ Ta có :
\(f\left(x\right)=\left(9x^3-\frac{1}{3}x^3\right)+\left(3x^2+\frac{1}{3}x^2-3x^2\right)+\left(-\frac{1}{3}x-3x+3x\right)+\left(27-9\right)\)
\(=\frac{26}{3}x^3+\frac{1}{3}x^2-\frac{1}{3}x+18\)
Vậy...
b/ Ta có :
+) \(P\left(3\right)=\frac{26}{3}.3^3+\frac{1}{3}.3^2-\frac{1}{3}.3+18=254\)
+) \(P\left(-3\right)=\frac{26}{3}.\left(-3\right)^3+\frac{1}{3}.\left(-3\right)^2-\frac{1}{3}.\left(-3\right)+18=-212\)
Vậy..
Câu 2: n= 12
Do A=\(\frac{\left(2x2\right)^6x\left(2x3\right)^6}{3^6x2^6}=2^{12}\)
\(f\left(x\right)=4x^2+3x+1\)
\(g\left(x\right)=3x^2-2x+1.\)
a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)
\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)
\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x.\)
b) Ta có \(h\left(x\right)=x^2+5x.\)
Đặt \(x^2+5x=0\)
\(\Rightarrow x.\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)
Chúc bạn học tốt!
bn tự thay t và s mà đề cho vào rồi tính bình thường
còn câu cuối tương tự
Còn rút gọn cơ mà