K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Tại a = -9 ta được:

= 3√-(-9) - |3 + 2(-9)|

= 3√32 - |3 - 18|

= 3.3 - |-15| = 9 - 15 = -6

17 tháng 5 2021
a) √ − 9 a − √ 9 + 12 a + 4 a 2 = √ − 9 a − √ 3 2 + 2.3 .2 a + ( 2 a ) 2 = √ 3 2 ⋅ ( − a ) − √ ( 3 + 2 a ) 2 = 3 √ − a − | 3 + 2 a | Thay a = − 9 ta được: 3 √ 9 − | 3 + 2 ⋅ ( − 9 ) | = 3.3 − 15 = − 6 . b) Điều kiện: m ≠ 2 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m m − 2 √ m 2 − 2.2 ⋅ m + 2 2 = 1 + 3 m m − 2 √ ( m − 2 ) 2 = 1 + 3 m | m − 2 | m − 2 +) m > 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m . ( 1 ) +) m < 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 − 3 m . ( 2 ) Với m = 1 , 5 < 2 . Thay vào biểu thức ( 2 ) ta có: 1 − 3 m = 1 − 3.1 , 5 = − 3 , 5 Vậy giá trị biểu thức tại m = 1 , 5 là − 3 , 5 . c) √ 1 − 10 a + 25 a 2 − 4 a = √ 1 − 2.1 .5 a + ( 5 a ) 2 − 4 a = √ ( 1 − 5 a ) 2 − 4 a = | 1 − 5 a | − 4 a +) Với a < 1 5 , ta được: 1 − 5 a − 4 a = 1 − 9 a . ( 3 ) +) Với a ≥ 1 5 , ta được: 5 a − 1 − 4 a = a − 1 . ( 4 ) Vì a = √ 2 > 1 5 . Thay vào biểu thức ( 4 ) ta có: a − 1 = √ 2 − 1 . Vậy giá trị của biểu thức tại a = √ 2 là √ 2 − 1 . d) 4 x − √ 9 x 2 + 6 x + 1 = 4 x − √ ( 3 x ) 2 + 2.3 x + 1 = 4 x − √ ( 3 x + 1 ) 2 = 4 x − | 3 x + 1 | +) Với 3 x + 1 ≥ 0 ⇔ x ≥ − 1 3 , ta có: 4 x − ( 3 x + 1 ) = 4 x − 3 x − 1 = x − 1 . ( 5 ) +) Với 3 x + 1 < 0 ⇔ x < − 1 3 , ta có: 4 x + ( 3 x + 1 ) = 4 x + 3 x + 1 = 7 x + 1 . ( 6 ) Vì x = − √ 3 < − 1 3 . Thay vào biểu thức ( 6 ) , ta có: 7 x + 1 = 7 . ( − √ 3 ) + 1 = − 7 √ 3 + 1 . Giá trị của biểu thức tại x = − √ 3 là − 7 √ 3 + 1
19 tháng 5 2021

a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}

=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}

=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}

=3 \sqrt{-a}-|3+2 a|

Thay a=-9 ta được:

3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-6.

b) Điều kiện: m \neq 2

1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}

=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}

=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}

=1+\dfrac{3 m|m-2|}{m-2}

+) m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m(1)

+) m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m(2)

Với m=1,5<2. Thay vào biểu thức (2) ta có: 1-3 m=1-3.1,5=-3,5

Vậy giá trị biểu thức tại m=1,5 là -3,5.

c) \sqrt{1-10 a+25 a^{2}}-4a

=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a

=\sqrt{(1-5a)^{2}}-4 a

=|1-5 a|-4 a

+) Với a <\dfrac{1}{5}, ta được: 1-5a-4 a=1-9a(3)

+) Với a \ge \dfrac{1}{5}, ta được: 5 a-1-4 a=a-1(4)

Vì a=\sqrt{2}>\dfrac{1}{5}. Thay vào biểu thức (4) ta có: a-1=\sqrt{2}-1.

Vậy giá trị của biểu thức tại a=\sqrt{2} là \sqrt{2}-1.

d) 4 x-\sqrt{9 x^{2}+6 x+1}

=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}

=4 x-|3x+1|

+) Với 3x+1 \geq 0 \Leftrightarrow x \ge -\dfrac{1}{3}, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-1(5)

+) Với 3x+1<0 \Leftrightarrow x <-\dfrac{1}{3}, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+1(6)

Vì x=-\sqrt{3}<-\dfrac{1}{3}. Thay vào biểu thức (6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+1.

Giá trị của biểu thức tại x=-\sqrt{3} là -7 \sqrt{3}+1.

27 tháng 2 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Tại a = -9 ta được:

= 3√-(-9) - |3 + 2(-9)|

= 3√32 - |3 - 18|

= 3.3 - |-15| = 9 - 15 = -6

Để học tốt Toán 9 | Giải bài tập Toán 9

Tại a = √2 ta được:

= |1 - 5√2| - 4√2

= (5√2 - 1) - 4√2

= √2 - 1

Để học tốt Toán 9 | Giải bài tập Toán 9

Tại x = -√3 ta được:

= 4(-√3) - |3(-√3) + 1|

= -4√3 - |-3√3 + 1|

= -4√3 - (3√3 - 1)

= -7√3 + 1

31 tháng 12 2023

a: Thay x=49 vào A, ta được:

\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)

b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)

P>1 khi P-1>0

=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)

=>\(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)

Câu 2: 

a: Ta có: \(P=3x-\sqrt{x^2-10x+25}\)

\(=3x-\left|x-5\right|\)

\(=\left[{}\begin{matrix}3x-x+5=2x+5\left(x\ge5\right)\\3x+x-5=4x-5\left(x< 5\right)\end{matrix}\right.\)

b: Vì x=2<5 nên \(P=4\cdot2-5=8-5=3\)

a: Khi x=16 thì \(A=\dfrac{2\cdot\sqrt{16}}{\sqrt{16}+3}=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)

b: P=A+B

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{7\sqrt{x}+3}{9-x}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x+5\sqrt{x}+6}{x-9}\)

18 tháng 4 2023

`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`

Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`

`b)` Với `x >= 0,x ne 4` có:

`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[\sqrt{x}-2]/[\sqrt{x}-3]`

`c)` Với `x >= 0,x ne 4` có:

`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`

Có: `C >= 1`

`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`

`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`

`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`

  Vì `x >= 0=>\sqrt{x} >= 0`

  `=>\sqrt{x}-3 > 0`

`<=>x > 9` (t/m đk)

loading...  loading...  

18 tháng 5 2021

`P=(sqrta+3)/(sqrta-2)-(sqrta-1)/(sqrta+2)+(4sqrta-4)/(4-a)`

`đk:x>=0,x ne 4`

`P=(a+5sqrta+6-a+3sqrta-2-4sqrta+4)/(a-4)`

`=(4sqrta+8)/(a-4)`

`=4/(sqrta-2)`

`b)a=9`

`=>P=4/(3-2)=4`

a) Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}-4}{4-a}\)

\(=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{4\sqrt{a}+8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}=\dfrac{4}{\sqrt{a}-2}\)

b) Thay a=9 vào P, ta được:

\(P=\dfrac{4}{\sqrt{9}-2}=\dfrac{4}{3-2}=\dfrac{4}{1}=4\)

Vậy: khi a=9 thì P=4

a: Thay x=16 vào A, ta được:

\(A=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)

a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có: \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{2}+1-\sqrt{2}+1\)

=2

Thay x=2 vào A, ta được:

\(A=\dfrac{-3}{3+\sqrt{2}}=\dfrac{-9+3\sqrt{2}}{7}\)