Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Thay ta được:
.
b) Điều kiện:
+) , ta được: .
+) , ta được: .
Với . Thay vào biểu thức ta có:
Vậy giá trị biểu thức tại là .
c)
+) Với , ta được: .
+) Với , ta được: .
Vì . Thay vào biểu thức ta có: .
Vậy giá trị của biểu thức tại là .
d)
+) Với , ta có: .
+) Với , ta có: .
Vì . Thay vào biểu thức , ta có: .
Giá trị của biểu thức tại là .
Tại a = -9 ta được:
= 3√-(-9) - |3 + 2(-9)|
= 3√32 - |3 - 18|
= 3.3 - |-15| = 9 - 15 = -6
Tại a = √2 ta được:
= |1 - 5√2| - 4√2
= (5√2 - 1) - 4√2
= √2 - 1
Tại x = -√3 ta được:
= 4(-√3) - |3(-√3) + 1|
= -4√3 - |-3√3 + 1|
= -4√3 - (3√3 - 1)
= -7√3 + 1
a: Thay x=49 vào A, ta được:
\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)
b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)
P>1 khi P-1>0
=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)
=>\(\sqrt{x}-2>0\)
=>\(\sqrt{x}>2\)
=>x>4
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)
Câu 2:
a: Ta có: \(P=3x-\sqrt{x^2-10x+25}\)
\(=3x-\left|x-5\right|\)
\(=\left[{}\begin{matrix}3x-x+5=2x+5\left(x\ge5\right)\\3x+x-5=4x-5\left(x< 5\right)\end{matrix}\right.\)
b: Vì x=2<5 nên \(P=4\cdot2-5=8-5=3\)
a: Khi x=16 thì \(A=\dfrac{2\cdot\sqrt{16}}{\sqrt{16}+3}=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)
b: P=A+B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{7\sqrt{x}+3}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+5\sqrt{x}+6}{x-9}\)
`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`
Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`
`b)` Với `x >= 0,x ne 4` có:
`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[\sqrt{x}-2]/[\sqrt{x}-3]`
`c)` Với `x >= 0,x ne 4` có:
`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`
Có: `C >= 1`
`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`
`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`
`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`
Vì `x >= 0=>\sqrt{x} >= 0`
`=>\sqrt{x}-3 > 0`
`<=>x > 9` (t/m đk)
`P=(sqrta+3)/(sqrta-2)-(sqrta-1)/(sqrta+2)+(4sqrta-4)/(4-a)`
`đk:x>=0,x ne 4`
`P=(a+5sqrta+6-a+3sqrta-2-4sqrta+4)/(a-4)`
`=(4sqrta+8)/(a-4)`
`=4/(sqrta-2)`
`b)a=9`
`=>P=4/(3-2)=4`
a) Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}-4}{4-a}\)
\(=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{4\sqrt{a}+8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}=\dfrac{4}{\sqrt{a}-2}\)
b) Thay a=9 vào P, ta được:
\(P=\dfrac{4}{\sqrt{9}-2}=\dfrac{4}{3-2}=\dfrac{4}{1}=4\)
Vậy: khi a=9 thì P=4
a: Thay x=16 vào A, ta được:
\(A=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)
a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
=2
Thay x=2 vào A, ta được:
\(A=\dfrac{-3}{3+\sqrt{2}}=\dfrac{-9+3\sqrt{2}}{7}\)
Tại a = -9 ta được:
= 3√-(-9) - |3 + 2(-9)|
= 3√32 - |3 - 18|
= 3.3 - |-15| = 9 - 15 = -6