Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{25.9-25.17}{-8.80-8.10}=\dfrac{25.\left(9-17\right)}{-8.\left(80+10\right)}=\dfrac{25.\left(-8\right)}{-8.90}=\dfrac{25}{90}=\dfrac{5}{18}\)
\(\dfrac{48.12-48.15}{-3.270-3.30}=\dfrac{48.\left(12-15\right)}{-3.\left(270+30\right)}=\dfrac{48.\left(-3\right)}{-3.300}=\dfrac{48}{300}=\dfrac{4}{25}\)
MC = 450
\(\dfrac{5}{18}=\dfrac{5.25}{18.25}=\dfrac{125}{450}\)
\(\dfrac{4}{25}=\dfrac{4.18}{25.18}=\dfrac{72}{450}\)
25.9−25.17−8.80−8.10=25.(9−17)−8.(80+10)=25.(−8)−8.90=2590=51825.9−25.17−8.80−8.10=25.(9−17)−8.(80+10)=25.(−8)−8.90=2590=518
48.12−48.15−3.270−3.30=48.(12−15)−3.(270+30)=48.(−3)−3.300=48300=42548.12−48.15−3.270−3.30=48.(12−15)−3.(270+30)=48.(−3)−3.300=48300=425
MC = 450
518=5.2518.25=125450518=5.2518.25=125450
((25.9 - 25.17))(( - 8.80 - 8.10)) ) và ((48.12 - 48.15))(( - 3.270 - 3.30)) ). hãy so sánh 2 phân số trên
a) \(\frac{25.9-25.17}{-8.80-8.10}=\frac{25.\left(9-17\right)}{-8.\left(80+10\right)}=\frac{25.\left(-8\right)}{-8.90}=\frac{5}{18}\)
b) \(\frac{48.12-48.15}{-3.270-3.30}=\frac{48.\left(12-15\right)}{-3.\left(270+30\right)}=\frac{48.\left(-3\right)}{-3.300}=\frac{4}{25}\)
c) \(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}=\frac{2^5.8}{2^5.\left(25-3\right)}=\frac{2^5.8}{2^5.22}=\frac{4}{11}\)
d) \(\frac{3^4.5-3^6}{3^4.13+3^4}=\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}=\frac{3^4.\left(5-9\right)}{3^4.14}=\frac{3^4.\left(-4\right)}{3^4.14}=\frac{-2}{7}\)
a/\(\frac{3939-101}{3.2929+505}=\frac{39.101-101}{8787+505}=\frac{101.\left(39-1\right)}{87.101+5.101}=\frac{101.38}{101.\left(87+5\right)}=\frac{38}{92}\)
\(=\frac{38}{92}\)
b/\(\frac{6.4+6.7}{6.5+12}=\frac{4+1.7}{1.5+2}=\frac{4+7}{5+2}=\frac{11}{7}\)
\(\dfrac{25.9-25.17}{-8.80-8.10}=\dfrac{-200}{-720}=\dfrac{5}{18}\)
\(\dfrac{48.12-48.15}{-3.270-3.30}=\dfrac{-144}{-900}=\dfrac{4}{25}\)
a, Quy đồng
\(\dfrac{5}{18}=\dfrac{5\times25}{18\times25}=\dfrac{125}{450}\)
\(\dfrac{4}{25}=\dfrac{4.18}{25.18}=\dfrac{72}{450}\)