K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

\(\sqrt{1+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{a}\right)^2-\dfrac{2}{a}+\dfrac{1}{\left(a+1\right)^2}}=\sqrt{\left(\dfrac{a+1}{a}\right)^2-2.\dfrac{a+1}{a}.\dfrac{a}{a+1}+\dfrac{1}{\left(a+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{a}-\dfrac{1}{a+1}\right)^2}=1+\dfrac{1}{a}-\dfrac{1}{a+1}\left(a>0\right)\)

Áp dụng điều này vào bài toán , ta có :

\(P=\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1^2+\dfrac{1}{2018^2}+\dfrac{1}{2019^2}}=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}=2017+\dfrac{1}{2}-\dfrac{1}{2019}\)

31 tháng 7 2018

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

31 tháng 7 2018

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(n+1-n)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

\(=1-\frac{1}{\sqrt{2019}}\)

11 tháng 6 2021

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)

 

11 tháng 6 2021

cả 2 ý bạn trục căn thức ở mấu là xong nhé:

vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy

b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)

\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)

\(=\dfrac{3-\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

1.

Đặt biểu thức là $A$

Ta thấy:

$\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$

Tương tự với các phân số còn lại và công theo vế thì:

$A=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2019}-\sqrt{2018})$

$=\sqrt{2019}-1$

 

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

2.

$\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{5.3}+3}+\sqrt{3-2\sqrt{3.1}+1}$

$=\sqrt{(\sqrt{5}-\sqrt{3})^2}+\sqrt{(\sqrt{3}-1)^2}$

$=|\sqrt{5}-\sqrt{3}|+|\sqrt{3}-1|$

$=\sqrt{5}-\sqrt{3}+\sqrt{3}-1=\sqrt{5}-1$

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

Lời giải:

Xét \(1+\frac{1}{n^2}+\frac{1}{(n+1)^2}=(1+\frac{1}{n})^2-\frac{2}{n}+\frac{1}{(n+1)^2}\)

\(=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-\frac{2}{n}\)

\(=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-2.\frac{n+1}{n}.\frac{1}{n+1}\)

\(=\left(\frac{n+1}{n}-\frac{1}{n+1}\right)^2=\left(1+\frac{1}{n(n+1)}\right)^2\)

\(\Rightarrow \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=1+\frac{1}{n(n+1)}\)

Do đó:

\(A=1+\frac{1}{1.2}+1+\frac{1}{2.3}+...+1+\frac{1}{2018.2019}\)

\(=2018+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

\(=2018+\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2019-2018}{2018.2019}=2018+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=2019-\frac{1}{2019}\)

29 tháng 11 2018

co cong thuc \(\sqrt{\dfrac{1}{1}+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}}=\dfrac{1}{1}+\dfrac{1}{a}-\dfrac{1}{a+1}\) ban tu chung minh nha

11 tháng 6 2021

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.

28 tháng 10 2022

\(=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)

=2017-1/2019

28 tháng 12 2020

1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}-2\sqrt{3}=\sqrt{3}-2\sqrt{3}=-\sqrt{3}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(P=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)

\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)

\(M=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(M=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)

\(N=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(N=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4-x+9+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(N=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)

\(N=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne4\end{matrix}\right.\)

 \(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)

\(Q=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\right)\)

\(Q=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4+\sqrt{x}-8-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(Q=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)

\(Q=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

p/s: sorry tại n' câu wa nên mình ko làm chi tiết đc =(( lần sau nhớ chia các câu ra cho dễ nhìn hơn nha, đánh hơi mỏi tay :'( có j ko hỉu cmt dưới nha

 

29 tháng 12 2020

cam on owo