Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{2}{3}\)
Ta có:\(A=\left(\dfrac{a+4\sqrt{a}+4}{a+2\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{a-2\sqrt{a}}-\dfrac{3\sqrt{a}+6}{4-a}\right)\)
\(=\left[\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right]:\left[\dfrac{\sqrt{a}-4}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{3\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right]\)
\(=\dfrac{a-4-a-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}:\dfrac{\sqrt{a}-4+3\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\dfrac{-4-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}.\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{4\sqrt{a}-4}=\dfrac{-2-\sqrt{a}}{2\sqrt{a}-2}\)
Ta có: \(A=\left(\dfrac{a+4\sqrt{a}+4}{a+2\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{a-2\sqrt{a}}-\dfrac{3\sqrt{a}+6}{4-a}\right)\)
\(=\left(\dfrac{\sqrt{a}+2}{\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{3}{\sqrt{a}-2}\right)\)
\(=\dfrac{a-4-a}{\sqrt{a}\left(\sqrt{a}-2\right)}:\dfrac{\sqrt{a}-4+3\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\dfrac{-4}{4\left(\sqrt{a}+1\right)}=\dfrac{-1}{\sqrt{a}+1}\)
câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )
Với `x >= 0,x ne 4` có:
`M=[(\sqrt{x}+1)(\sqrt{x}+2)+2\sqrt{x}(\sqrt{x}-2)-2-5\sqrt{x}]/[(\sqrt{x}-2)(\sqrt{x}+2)]`
`M=[x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}]/[(\sqrt{x}-2)(\sqrt{x}+2)]`
`M=[3x-6\sqrt{x}]/[(\sqrt{x}-2)(\sqrt{x}+2)]=[3\sqrt{x}]/[\sqrt{x}+2]`
____________
`N=(1/[\sqrt{a}-1]-1/\sqrt{a}):([\sqrt{a}+1]/[\sqrt{a}-2]-[\sqrt{a}+2]/[\sqrt{a}-1])`
- Biểu thức `N` là như vầy?
Với `a > 0,a ne 1,a ne 4` có:
`N=[\sqrt{a}-\sqrt{a}+1]/[\sqrt{a}(\sqrt{a}-1)]:[(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}+2)(\sqrt{a}-2)]/[(\sqrt{a}-2)(\sqrt{a}-1)]`
`N=1/[\sqrt{a}(\sqrt{a}-1)].[(\sqrt{a}-2)(\sqrt{a}-1)]/[a-1-a+4]`
`N=[\sqrt{a}-2]/[3\sqrt{a}]`
Với \(x\ge0;x\ne4\)
Khi đó:
\(M=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{x-4}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}-\dfrac{2+5\sqrt{x}}{x-4}\\ =\dfrac{x+2\sqrt{x}+\sqrt{x}+2}{x-4}+\dfrac{2x-4\sqrt{x}}{x-4}-\dfrac{2+5\sqrt{x}}{x-4}\\ =\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\\ =\dfrac{3x-6\sqrt{x}}{x-4}\\ =\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Với \(a>0;a\ne1;a\ne4\)
Khi đó:
\(N=(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\dfrac{\sqrt{a}}{a-\sqrt{a}}-\dfrac{\sqrt{a}-1}{a-\sqrt{a}}\right):\left(\dfrac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{a-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ =\dfrac{1}{a-\sqrt{a}}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\\ =\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right).3}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)
\(=\dfrac{\sqrt{a}-2+\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\cdot\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}}\)
=2
b) Ta có: \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}-1}{x^2}\)
\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}\)
\(=\dfrac{4x-1}{x^2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\notin\left\{1;4\right\}\end{matrix}\right.\)
\(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{a-1-a+4}\)
\(=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3\sqrt{a}\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
Câu 2:
Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
Câu 1:
Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)
\(=1\)
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)
\(P=\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\cdot\left(\sqrt{a}-\dfrac{4}{\sqrt{ }a}\right)\)
\(=\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\cdot\dfrac{a-4}{\sqrt{a}}\)
\(=\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{\sqrt{a}}=\dfrac{-8\sqrt{a}}{\sqrt{a}}=-8\)
\(P=\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\) (ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\))
\(=\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\)
\(=\left(\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\)
\(=\left(\dfrac{\left(\sqrt{a}-2-\sqrt{a}-2\right)\left(\sqrt{a}-2+\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}}\right)\)
\(=\dfrac{-4.2\sqrt{a}}{\sqrt{a}}\)
\(=-8\)
#YM