K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

\(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}\)

ĐKXĐ : \(x+y\ne0\Leftrightarrow x\ne-y\)

\(=\frac{5\cdot3x\cdot\left(x+y\right)^2\left(x+y\right)}{5\cdot y\cdot\left(x+y\right)^2}\)

\(=\frac{3x\left(x+y\right)}{y}\)

29 tháng 10 2020

\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)( ĐKXĐ tự tìm nhé *)

\(=\frac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\frac{\left(x^3+y^3\right)^2}{x\left[\left(x^3\right)^2-\left(y^3\right)^2\right]}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^3+y^3}{x\left(x^3-y^3\right)}=\frac{x^3+y^3}{x^4-xy^3}\)

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)

       \(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)

         \(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

           \(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)

               \(=\frac{x+y-z}{x-y+z}\)

Ta thay : \(x=0;y=2009;z=2010\) ta được :

\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)

Chúc bạn học tốt !!!

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)

Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :

\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)

10 tháng 9 2019

Bạn viết rõ hơn nhé : 

\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)

\(\frac{x^4-xy^3}{2xy+y^2}.\frac{2x+y}{x^3+x^2y+xy^2}\)

\(\frac{x.\left(x-y\right).\left(x^2+xy+y^2\right).\left(2x+y\right)}{y.\left(2x+y\right).x.\left(x^2+xy+y^2\right)}\)

\(\frac{x-y}{y}\)

Chúc bạn học tốt !!!

27 tháng 7 2021

a, \(2x\left(x+2\right)-\left(x+2\right)\left(x-2\right)=\left(x+2\right)^2=x^2+4x+4\)

b, \(\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-27x\right)=x^3-27-x^2+27x\)

c, \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)=x^3+y^3-x^3+y^3=2y^3\)

27 tháng 7 2021

2𝑥(𝑥+2)−(𝑥+2)(𝑥−2)

2𝑥^2+4𝑥−(𝑥+2)(𝑥−2)

2𝑥^2+4𝑥−(𝑥(𝑥−2)+2(𝑥−2))

2𝑥^2+4𝑥−(𝑥^2−2𝑥+2(𝑥−2))

2𝑥^2+4𝑥−(𝑥^2−2𝑥+2𝑥−4)

2𝑥^2+4𝑥−(𝑥^2−4)

2𝑥^2+4𝑥−𝑥^2+4

2𝑥^2−𝑥^2+4𝑥+4

15 tháng 9 2018

\(\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)

\(=x^3+y^3+3x^2y+3xy^2-x^3+y^3+3x^2y-3xy^2-2y^3\)

\(=2y^3+6x^2y-2y^3\)

\(=6x^2y\)

15 tháng 9 2018

Với a+b+c=0 thì \(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=a^3+b^3-a^3-b^3-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)=-3ab.\left(-c\right)=3abc\)

Áp dụng:\(\left(x+y\right)^3-\left(x-y\right)^3-\left(2y\right)^3=\left(x+y\right)^3+\left(y-x\right)+\left(-2y\right)^3\)

có \(x+y+y-x+\left(-2y\right)=0\)\(\Rightarrow\left(x+y\right)^3-\left(x-y\right)^3-\left(2y\right)^3=3.\left(-2y\right).\left(x+y\right)\left(y-x\right)\)

\(=6y\left(x+y\right)\left(x-y\right)\)\(=6y\left(x^2-y^2\right)=6x^2y-6y^3\)

5 tháng 10 2020

a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3

b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81

c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3

d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2

e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2

= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )

= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6

= -3x2 + 39x + 6

= -3( x2 - 13x - 2 )

f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3

= x3 + y3 + x3 - y3 - 2x3

= 0

g) x2 + 2x( y + 1 ) + y2 + 2y + 1

= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )

= x2 + 2x( y + 1 ) + ( y + 1 )2

= ( x + y + 1 )2

= [ ( x + y ) + 1 ]2

= ( x + y )2 + 2( x + y ) + 1

= x2 + 2xy + y2 + 2x + 2y + 1

13 tháng 5 2018

a)<=>

A,=(x+y)(x-y)=x^2-y^2

x=(-1/2)^5:(1/2)^4=-1/2

x^2=1/4

y=8^2/(-2)^5=-2

y^2=4

A=1/4-4=-15/4

17 tháng 5 2018
https://i.imgur.com/ZAuiaWv.jpg