\(\dfrac{12xy^3z⁴}{24x^2y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{12xy^3z^4}{24x^2y^3z^3}=\dfrac{1}{2}\cdot\dfrac{1}{x}\cdot z=\dfrac{z}{2x}\)

b: \(=\dfrac{3\left(x-2\right)}{6x\left(x-2\right)}=\dfrac{1}{2x}\)

21 tháng 7 2019

\(\text{a)}x^3-6x^2+12x-8\)

\(=x^3-2x^2-4x^2+8x+4x-8\)

\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)

\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)\left(x+2\right)^2\)

21 tháng 7 2019

\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)

Bài 2:

\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)

\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)

Bài 3:

\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)

\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)

30 tháng 11 2019

1) ĐKXĐ: x \(\ne\)1; x \(\ne\)0

Ta có: A = \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6x}{x\left(x-1\right)}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{4x^2-3x+17+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{12}{x^2+x+1}\)

b) Ta có: B = \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)

B = \(\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)

B = \(\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x+3y\right)\left(x-3y\right)}\)

B = \(\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B =  \(\frac{x^2+6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{x+3y}{x\left(x-3y\right)}\)

30 tháng 11 2019

\(A=\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x\left(1-x\right)}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}-\frac{6x}{x\left(x-1\right)}\)

\(A=\frac{x\left(4x^2-3x+17\right)+x\left(x-1\right)\left(2x-1\right)-6x\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4x^3-3x^2+17x+x\left(2x^2-x-2x+1\right)-6x^3-6x^2-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{\left(4x^3+2x^3-6x^3\right)-3x^2-3x^3-6x^2+17x+x-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x^2+12x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\frac{-12}{x^2+x+1}\)

28 tháng 9 2019

ko ai thèm trả lời đâu cu

28 tháng 9 2019

a) \(4x^2-6x=2x\left(2x-3\right)\)

b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)

c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(5x+3\right)\left(x-y\right)\)

d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)

e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)

\(=5\left(1-3x\right)\left(x+3y\right)\)

f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)

\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)

28 tháng 10 2020

Bài 2:

a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)

c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)

\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)

1 tháng 12 2019

a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)

b)\(=\frac{3x\left(x+y\right)}{y}\)

c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

1 tháng 12 2019

a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)

b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)

c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)

h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)

j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)

Câu b) bạn xem lại nhé.

Học tốt ^3^

\(M=a+\frac{\left(2a+b\right)\left(2+b\right)-\left(2a-b\right)\left(2-b\right)}{4-b^2}-\frac{4a}{4-b^2}.\)

\(=a+\frac{4b\left(a+1\right)-4a}{4-b^2}\)

Ta có \(4ab+4b-4a=4\left[\frac{a^2}{a+1}+\frac{a}{a+1}-4a\right]=-12a\)

     \(4-b^2=4-\frac{a^2}{\left(a+1\right)^2}=\frac{4\left(a^2+2a+1\right)-a^2}{\left(a+1\right)^2}=\frac{3a^2+8a+4}{\left(a+1\right)^2}\)

\(\Rightarrow M=a+\frac{-12a\left(a+1\right)^2}{3a^2+8a+4}\)

\(=-\frac{9a^3+16a^2+8a}{3a^2+8a+4}\)

12 tháng 3 2020

 \(M=a+\frac{2a+b}{2-b}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)

      \(=a-\frac{2a+b}{b-2}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)

      \(=a-\frac{\left(2a+b\right)\left(2+b\right)+\left(2a-b\right)\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}+\frac{4a}{b^2-4}\) 

      \(=a-\frac{4b\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)

      \(=a-\frac{4\frac{a}{a+1}\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)

      \(=a-\frac{4a}{b^2-4}+\frac{4a}{b^2-4}\)

      \(=a\)

8 tháng 6 2019

HIHI, bài này thì bó tay lẫn cả chân

Vì mới học xong lớp 6 hoi.

Học tốt nha, nếu ko ai giải thì thử vào câu hỏi tương tự thử 

Nha, học tốt !

#)Giải:

-Không sao mình biết cách làm mà, mình chỉ thử lòng ae thui !

7 tháng 1 2016

a)= \(\frac{-1}{xy}\)

b)\(\frac{3}{2x+6}\) - \(\frac{x-6}{2x^2+6x}\)\(\frac{3x}{2x\left(x+3\right)}\)\(\frac{x-6}{2x\left(x+3\right)}\)\(\frac{2x+6}{2x\left(x+3\right)}\)\(\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)\(\frac{1}{x}\)

c)\(\frac{1}{xy-x^2}\)\(\frac{1}{y^2-xy}\)\(\frac{1}{x\left(x-y\right)}\)\(\frac{1}{-y\left(x-y\right)}\)\(\frac{y}{xy\left(x-y\right)}\)\(\frac{-x}{xy\left(x-y\right)}\)\(\frac{y+x}{xy\left(x-y\right)}\) 

nhớ tick nhé