Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1b.=2((x+y)+(x+y)(x-y)+(x-y))=2(x2-y2+x+y+x-y)=2(x2-y2+2x)=2x2-2y2+4x
2a.=4xy+4xy+2y=8xy+2y=2y(4x+1)
b.=(3x)2+2.3x.y+y2-(2z)2=(3x+y)2-(2z)2=(3x+y-2z)(3x+y+2z)
c.=x2-x-7x+7=x(x-1)-7(x-1)=(x-1)(x-7)
\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2\)
\(=\left(2x\right)^2\)
\(=4x^2\)
hk tốt
^^
Bài 12:
1) A = x2 - 6x + 11
= (x2 - 6x + 9) + 2
= (x - 3)2 + 2
Ta có: (x - 3)2 ≥ 0 ∀ x
Dấu ''='' xảy ra khi x - 3 = 0 ⇔ x = 3
Do đó: (x - 3)2 + 2 ≥ 2
Hay A ≥ 2
Dấu ''='' xảy ra khi x = 3
Vậy Min A = 2 tại x = 3
2) B = x2 - 20x + 101
= (x2 - 20x + 100) + 1
= (x - 10)2 + 1
Ta có: (x - 10)2 ≥ 0 ∀ x
Dấu ''='' xảy ra khi x - 10 = 0 ⇔ x = 10
Do đó: (x - 10)2 + 1 ≥ 1
Hay B ≥ 1
Dấu ''='' xảy ra khi x = 10
Vậy Min B = 1 tại x = 10
Mấy câu dễ mình làm trước nhé. Mấy câu khó hơn mình trình bày sau :)
1) 2x2 - 5xy - 3y2 = 2x2 + xy - 6xy - 3y2 = x( 2x + y ) - 3y( 2x + y ) = ( 2x + y )( x - 3y )
2) 7x2 + 3xy - 10y2 = 7x2 - 7xy + 10xy - 10y2 = 7x( x - y ) + 10y( x - y ) = ( x - y )( 7x + 10y )
3) x2 + 5x - 2 = ( x2 + 5x + 25/4 ) - 33/4 = ( x + 5/2 )2 - \(\left(\frac{\sqrt{33}}{2}\right)^2\)= \(\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
6) x4 + 324 = ( x4 + 36x2 + 324 ) - 36x2 = ( x2 + 18 )2 - ( 6x )2 = ( x2 - 6x + 18 )( x2 + 6x + 18 )
4) x8 + x7 + 1
= x8 + x7 + x6 - x6 + 1
= x6( x2 + x + 1 ) - ( x6 - 1 )
= x6( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x6( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )( x6 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
5) x7 + x5 + 1
= x7 + x6 - x6 + x5 + 1
= x5( x2 + x + 1 ) - ( x6 - 1 )
= x5( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x5( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )[ x5 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x5 - x4 + x3 - x + 1 )
7) x5 - 5x3 + 4x
= x5 - x3 - 4x3 + 4x
= x3( x2 - 1 ) - 4x( x2 - 1 )
= ( x2 - 1 )( x3 - 4x )
= ( x - 1 )( x + 1 )x( x2 - 4 )
= x( x - 1 )( x + 1 )( x - 2 )( x + 2 )
8) Xin hàng :)
1)
a) \(\dfrac{18ab}{27bc}=\dfrac{2a}{3c}\)
b) \(\dfrac{-21b^2y^2}{-28by}=\dfrac{3by}{4}\)
c) \(\dfrac{-49a^3}{14b^3}=\dfrac{-7a^3}{2b^3}\)
d) \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{2x^2}{3y^3}\)
2)
a) \(\dfrac{a^3\left(a-5\right)}{a-5}=a^3\)
b) \(\dfrac{3\left(b+7\right)^4}{8\left(b+7\right)^6}=\dfrac{3}{8\left(b+7\right)^2}\)
c) \(\dfrac{15x\left(x+5\right)^2}{20x^2\left(x+5\right)}=\dfrac{3\left(x+5\right)}{4x}\)
d) \(\dfrac{x^3-4x^2}{y\left(x-4\right)}=\dfrac{x^2\left(x-4\right)}{y\left(x-4\right)}=\dfrac{x^2}{y}\)
e) \(\dfrac{5\left(a-2c\right)^2}{2a^2-4ac}=\dfrac{5\left(a-2c\right)^2}{2a\left(a-2c\right)}=\dfrac{5\left(a-2c\right)}{2a}\)
3)
a) \(\dfrac{ax-3a}{bx-3b}=\dfrac{a\left(x-3\right)}{b\left(x-3\right)}=\dfrac{a}{b}\) (câu này mình sửa lại đề)
b) \(\dfrac{5x+20y}{15x+60y}=\dfrac{5\left(x+4y\right)}{15\left(x+4y\right)}=\dfrac{1}{3}\)
c) \(\dfrac{3b-9c}{5b^2-15bc}=\dfrac{3\left(b-3c\right)}{5b\left(b-3c\right)}=\dfrac{3}{5b}\)
d) \(\dfrac{8a^2+40ab}{ab+5b^2}=\dfrac{8a\left(a+5b\right)}{b\left(a+5b\right)}=\dfrac{8a}{b}\)
4)
a) \(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}\)
\(=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
b) \(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
5)
a) \(\dfrac{45x\left(3-x\right)}{15\left(x-3\right)^3}=\dfrac{-45x\left(x-3\right)}{15\left(x-3\right)^3}=\dfrac{-3x}{\left(x-3\right)^2}\)
b) \(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=\dfrac{-9\left(x-2\right)^2}{4}\)
c) \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}=\dfrac{-x}{5y}\)
d) \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\dfrac{-\left(y+x\right)\left(x-y\right)}{\left(x-y\right)^3}=\dfrac{-x-y}{\left(x-y\right)^2}\)
1.
a, \(\dfrac{18ab}{27bc}=\dfrac{18ab:9b}{27bc:9b}=\dfrac{2a}{3c}\)
b, \(\dfrac{-21b^2y^2}{-28by}=\dfrac{-21b^2y^2:\left(-7\right)by}{-28by:\left(-7\right)by}=\dfrac{3by}{4}\)
c, \(\dfrac{-49a^3}{14b^3}=\dfrac{-49a^3:7}{14b^3:7}=\dfrac{-7a^3}{2b^3}\)
d, \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{6xy^2\cdot2x^2}{6xy^2\cdot3y^3}=\dfrac{2x^2}{3y^3}\)
2.
a,\(\dfrac{a^3\cdot\left(a-5\right)}{a-5}=\dfrac{a^3}{1}=a^3\)
b,\(\dfrac{3\cdot\left(b+7\right)^4}{8\cdot\left(b+7\right)^6}=\dfrac{3}{8\cdot\left(b+7\right)^2}\)
c,\(\dfrac{15x\cdot\left(x+5\right)^2}{20x^2\cdot\left(x+5\right)}=\dfrac{3\cdot\left(x+5\right)}{4x}\)
d,\(\dfrac{x^3-4x^2}{y\cdot\left(x-4\right)}=\dfrac{x^2}{y}\)
e,\(\dfrac{5\cdot\left(a-2x\right)^2}{2a^2-4ac}=\dfrac{5\cdot\left(a-2x\right)}{2a}\)
3.
a,\(\dfrac{ax-3a}{bx-3b}=\dfrac{a\cdot\left(x-3\right)}{b\cdot\left(x-3\right)}=\dfrac{a}{b}\)
b, \(\dfrac{5x+20y}{15x+60y}=\dfrac{5\cdot\left(x+4y\right)}{15\cdot\left(x+4y\right)}=\dfrac{5}{15}=\dfrac{1}{3}\)
c, \(\dfrac{3b-9c}{5b^2-15bc}=\dfrac{3\cdot\left(b-3c\right)}{5b\cdot\left(b-3c\right)}=\dfrac{3}{5b}\)
d, \(\dfrac{8a^2+40ab}{ab+5b^2}=\dfrac{8a\cdot\left(a+5b\right)}{b\cdot\left(a+5b\right)}=\dfrac{8a}{b}\)
4.
a,\(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\cdot\left(x^2-4x+4\right)}{x\cdot\left(x^3-8\right)}=\dfrac{3\cdot\left(x-2\right)^2}{x\cdot\left(x-2\right)\cdot\left(x^2+2x+4\right)}=\dfrac{3\cdot\left(x-2\right)}{x\cdot\left(x^2+2x+4\right)}=\dfrac{3\cdot\left(x-2\right)}{x\cdot\left(x+2\right)^2}\)
b, \(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\cdot\left(x^2+2x+1\right)}{3x\cdot\left(x+1\right)}=\dfrac{7\cdot\left(x+1\right)^2}{3x\cdot\left(x+1\right)}=\dfrac{7\cdot\left(x+1\right)}{3x}\)
5.
a, \(\dfrac{45x\cdot\left(3-x\right)}{15x\cdot\left(x-3\right)^3}=\dfrac{3\cdot\left(3-x\right)}{\left(x-3\right)^3}=\dfrac{-3\cdot\left(x-3\right)}{\left(x-3\right)^3}=\dfrac{-3}{\left(x-3\right)^2}\)
b, \(\dfrac{36\cdot\left(x-2\right)^3}{36-16x}=\dfrac{36\cdot\left(x-2\right)^3}{16\cdot\left(2-x\right)}=\dfrac{36\cdot\left(-\left(x-2\right)\right)^3}{16\cdot\left(2-x\right)}=\dfrac{-36\cdot\left(2-x\right)^3}{16\cdot\left(2-x\right)}=\dfrac{-9\cdot\left(2-x\right)^2}{4}\)
c, \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\cdot\left(x-y\right)}{5y\cdot\left(y-x\right)}=\dfrac{-x\cdot\left(y-x\right)}{5y\cdot\left(y-x\right)}=\dfrac{-x}{5y}\)
d, \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2+y^3}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{\left(x-y\right)^3}=\dfrac{-\left(x+y\right)\cdot\left(y-x\right)}{\left(x-y\right)^3}=\dfrac{-\left(x+y\right)}{\left(x-y\right)^2}\)
Câu 4:
\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)
a) \(\dfrac{a^3\left(a-5\right)}{a-5}=a^3 \)
b) \(\dfrac{3\left(b+7\right)4}{8\left(b+7\right)6}=\dfrac{12\left(b+7\right)}{48\left(b+7\right)}=\dfrac{1}{4}\)
c) \(\dfrac{15x\left(x+5\right)^2}{20x^2\left(x+5\right)}=\dfrac{15x}{20x^2}=\dfrac{3}{4x}\)
d) \(\dfrac{x^3-4x^2}{y\left(x-4\right)}=\dfrac{x^2\left(x-4\right)}{y\left(x-4\right)}=\dfrac{x^2}{y}\)
e) \(\dfrac{5\left(a-2c\right)^2}{2a^2-4ac}=\dfrac{5\left(a-2c\right)^2}{2a\left(a-2c\right)}=\dfrac{5\left(a-2c\right)}{2a}=\dfrac{5a-10c}{2a}\)