Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(\frac{1996}{\left|x\right|+1997}\)có GTLN \(\Leftrightarrow\left|x\right|+1997\)có GTNN.
Mà \(\left|x\right|+1997\ne0\)
Ta thấy: \(\left|x\right|\ge0\forall x\in R\Rightarrow\left|x\right|+1997\ge1997\)
\(\Rightarrow\left|x\right|=0\)thì \(\left|x\right|+1997\)có GTNN là \(1997\)
\(\Rightarrow\)GTLN của \(\frac{1996}{\left|x\right|+1997}\)là \(\frac{1996}{1997}\)khi x=0
2.\(\frac{\left|x\right|+1996}{-1997}=\frac{-\left(\left|x\right|+1996\right)}{1997}\)
\(\Rightarrow\left|x\right|+1996\)phải có GTNN thì \(\frac{\left|x\right|+1996}{-1997}\)đạt GTLN
Mà \(\left|x\right|\ge0\forall x\in R\Rightarrow x=0\)thì \(\left|x\right|+1996\)có GTNN là \(1996\)
Vậy GTLN của \(\frac{\left|x\right|+1996}{-1997}\)là \(\frac{1996}{-1997}\)khi x=0
GTLN của Q = -1996/1997 <=> x = 0
GTLN của P = -1996/1997 <=> x = 0
k cho mk nha
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...........\left(1-\frac{1}{2014}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right).........\left(\frac{2014}{2014}-\frac{1}{2014}\right)\)
\(=\frac{1}{2}.\frac{2}{3}............\frac{2013}{2014}\)
\(=\frac{1}{2014}\)
\(B=\frac{\left[\frac{2}{3}\right]^3\cdot\left[-\frac{3}{4}\right]^2\cdot\left[-1\right]^5}{\left[\frac{2}{5}\right]^2\cdot\left[-\frac{5}{12}\right]^3}\)
\(=\frac{\frac{2^3}{3^3}\cdot\frac{\left[-3\right]^2}{4^2}\cdot\left[-1\right]}{\frac{2^2}{5^2}\cdot\frac{\left[-5\right]^3}{12^3}}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left[-1\right]}{\frac{4}{25}\cdot\frac{-125}{\left[2^2\cdot3\right]^3}}\)
\(=\frac{\frac{1}{3}\cdot\frac{1}{2}\cdot\left[-1\right]}{\frac{4}{25}\cdot\frac{-125}{\left[2^2\right]^3\cdot3^3}}\)
\(=\frac{\frac{1\cdot1\cdot\left[-1\right]}{3\cdot2\cdot1}}{\frac{4}{25}\cdot\frac{-125}{4^3\cdot3^3}}\)
\(=\frac{\frac{-1}{6}}{\frac{4}{25}\cdot\frac{-125}{64\cdot27}}=\frac{\frac{-1}{6}}{\frac{4}{1}\cdot\frac{-5}{64\cdot27}}\)
\(=\frac{\frac{-1}{6}}{4\cdot\frac{-5}{64\cdot27}}=\frac{\frac{-1}{6}}{-\frac{20}{64\cdot27}}=\frac{72}{5}\)
\(\frac{-1}{1995}\)