Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{13\cdot\left(9-2\right)}{13}=7\)
b: \(=\dfrac{14\left(3-8\right)}{7\left(1+3\cdot3\right)}=2\cdot\dfrac{-5}{10}=-1\)
c: \(=\dfrac{54-72}{36}=\dfrac{-18}{36}=-\dfrac{1}{2}\)
d: \(=\dfrac{5^3}{10^2\cdot5}=\dfrac{5^2}{100}=\dfrac{1}{4}\)
\(\frac{10}{25}=\frac{10:5}{25:5}=\frac{2}{5}\)
\(\frac{5}{20}=\frac{5:5}{20:5}=\frac{1}{4}\)
\(\frac{6}{30}=\frac{6:6}{30:6}=\frac{1}{5}\)
\(\frac{60}{20}=\frac{60:20}{20:20}=3\)
Lời giải:
Xét tử số:
$\text{TS}=1+25^4+25^8+...+25^{28}$
$25^4.\text{TS}=25^4+25^8+...+25^{32}$
$\Rightarrow \text{TS}(25^4-1)=25^{32}-1$
$\text{TS}=\frac{25^{32}-1}{25^4-1}$
Xét mẫu số:
$\text{MS}=1+25^2+..+25^{30}$
$25^2.\text{MS}=25^2+25^4+...+25^{32}$
$\Rightarrow \text{MS}(25^2-1)=25^{32}-1$
$\Rightarrow \text{MS}=\frac{25^{32}-1}{25^2-1}$
Do đó:
$A=\frac{25^{32}-1}{25^4-1}:\frac{25^{32}-1}{25^2-1}=\frac{25^2-1}{25^4-1}$
$=\frac{25^2-1}{(25^2-1)(25^2+1)}=\frac{1}{25^2+1}$
`a,-10/25=(-2 xx 5)/(5 xx 5)=-2/5`
`b,(-9)/(-27)=(-9 xx 1)/(-9 xx 3)=1/3`
a: \(=\dfrac{21\cdot11}{22\cdot9}=\dfrac{1}{2}\cdot\dfrac{7}{3}=\dfrac{7}{6}\)
b: \(=\dfrac{49\cdot8}{10}=49\cdot\dfrac{4}{5}=\dfrac{196}{5}\)
c: \(=\dfrac{12\cdot\left(-4\right)}{32\cdot6}=\dfrac{-48}{192}=-\dfrac{1}{4}\)
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
\(a,\dfrac{583}{352}=\dfrac{53}{32}\\ b,\dfrac{121212}{313131}=\dfrac{12}{31}\\ c,\dfrac{153.24-153.11}{160-7}=\dfrac{153\left(24-11\right)}{153}=13\)
a,4/5
b=2/5
Rút gọn phân số sau:
a) \(\frac{8600-20}{10750-25}\)
\(=\frac{8580}{10725}\)
\(=\frac{4}{5}.\)
b) \(\frac{1350+10}{3375+25}\)
\(=\frac{1360}{3400}\)
\(=\frac{2}{5}.\)
Chúc bạn học tốt!