\(^2\)-(x-3).(x+3)-1969

b, (2x-3y).(2x+3y...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

\(a,\left(2x-1\right)^2-\left(x-3\right)\left(x+3\right)-1969\\ =4x^2-4x+1-x^2+9-1969\\ =3x^2-4x-1959\)

\(b,\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\\ =4x^2-9y^2-4x^2+4xy-y^2\\ =8y^2+4xy=4y\left(2y+x\right)\)

\(c,\left(x+3y\right)^2+\left(x+y\right)\left(x-y\right)+280\\ =x^2+6xy+9y^2+x^2-y^2+280\\ =2x^2+8y^2+6xy+280\)

a: \(\left(2x-1\right)^2-\left(x-3\right)\cdot\left(x+3\right)-1969\)

\(=4x^2-4x+1-x^2+9-1969\)

\(=3x^2-4x-1959\)

b: \(\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\)

\(=4x^2-9y^2-4x^2+4xy-y^2\)

\(=-10y^2+4xy\)

19 tháng 10 2018

Bài 1. Rút gọn:

\(a, x\left(1-x\right)+6\left(x+3\right)\left(x+3\right)\)

\(=x-x^2+6\left(x^2+6x+9\right)\)

\(=x-x^2+6x^2+36x+54\)

\(=5x^2+37x+54\)

\(b, \left(2-3x\right)\left(2+3x\right)-\left(x+5\right)\left(x-5\right)\)

\(=\left(4-9x^2\right)-\left(x^2-25\right)\)

\(=-10x^2+29\)

\(c, \left(3x+1\right)\left(x+5\right)-\left(x-1\right)\left(x+1\right)\)

\(=3x^2+15x+x+5-x^2+1\)

\(=2x^2+16x+6\)

\(d,\left(2-3x\right)\left(2x+3\right)+6\left(x-1\right)^2\)

\(=\left(4x+6-6x^2-9x\right)+6\left(x^2-2x+1\right)\)

\(=4x+6-6x^2-9x+6x^2-12x+6\)

\(=-17x+12\)

\(e, x\left(5-x\right)-\left(2x+2\right)\left(3x+2\right)-\left(x-2\right)\left(x+2\right)\)

\(=5x-x^2-\left(6x^2+4x+6x+4\right)-\left(x^2-4\right)\)

\(=5x-x^2-6x^2-4x-6x-4-x^2+4\)

\(=-8x^2-5x\)

25 tháng 10 2022

Bài 2: 

a: VT\(=x^3-xy+x^2y^2-y^3-x^3+y^3-x^2y^2\)

=-xy

b: \(VT=x^2+6xy+9y^2-x^2+9y^2-6xy=18y^2=VP\)

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt

12 tháng 7 2017

a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=24-11x\)

b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)

\(=8x^2y-6y^2-9x^2y+12y^2\)

\(=6y^2-x^2y\)

c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)

\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)

\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)

\(=4y^3+y^2+6xy^2\)

15 tháng 6 2017

a, \(2x^2+3\left(x+1\right)\left(x-1\right)-5x\left(x+1\right)\)

\(=2x^2+3\left(x^2-1\right)-5x^2-5x\)

\(=2x^2+3x^2-3-5x^2-5x\)

\(=\left(2x^2+3x^2-5x^2\right)-3-5x\)

\(=-\left(5x+3\right)\)

b, \(\left(4x+3y\right)\left(2x-5y\right)-\left(2x+6y\right)\left(3x-5y\right)\)

\(=8x^2-20xy+6xy-\left(15y^2-6x^2-10xy-18xy-30y^2\right)\)

\(=8x^2-20xy+6xy-15y^2+6x^2+10xy+18xy+30y^2\)

\(=\left(8x^2+6x^2\right)+\left(-20xy+6xy+10xy+18xy\right)+\left(-15y^2+30y^2\right)\)

\(=14x^2+14xy+15y^2\)

\(=14x.\left(x+y\right)+15y^2\)

Chúc bạn học tốt!!!

15 tháng 6 2017

a) \(2x^2+3.\left(x+1\right).\left(x-1\right)-5x\left(x+1\right)\)

= \(2x^2+3.\left(x^2-1\right)-5x.\left(x+1\right)\)

= \(2x^2+3x^2-3-5x^2-5x\)

= \(-5x-3\)

\(1,\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)

\(2,=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)

pt thành nhân tử là ra

21 tháng 6 2017

a) \(\left(x+\dfrac{1}{2}\right)^2-2x^2\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-2x^2\)

\(=x^2+x+\dfrac{1}{4}-2x^2\)

\(=-x^2+x+\dfrac{1}{4}\)

b) \(\left(x-2y\right)^2-4y^2\)

\(=x^2-2\cdot x\cdot2y+\left(2y\right)^2-4y^2\)

\(=x^2-4xy+4y^2-4y^2\)

\(=x^2-4xy\)

c) \(\left(x+\dfrac{1}{2}y\right)^3\)

\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}y+3\cdot x+\left(\dfrac{1}{2}y\right)^2+\left(\dfrac{1}{2}y\right)^3\)

\(=x^3+\dfrac{3}{2}x^2y+\dfrac{3}{4}xy^2+\dfrac{1}{8}y^3\)

d) \(\left(2x^2-3y\right)^3\)

\(=\left(2x^2\right)^3-3\cdot\left(2x^2\right)^2\cdot3y+3\cdot2x^2\cdot\left(3y\right)^2-\left(3y\right)^3\)

\(=8x^6-36x^4y+54x^2y^2-27y^3\)

e) \(\left(x^2+y\right)^2-\left(x+y\right)^2\)

\(=\left[\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\right]-\left(x^2+2\cdot x\cdot y+y^2\right)\)

\(=\left(x^4+2x^2y+y^2\right)-\left(x^2+2xy+y^2\right)\)

\(=x^4+2x^2y+y^2-x^2-2xy-y^2\)

\(=x^4+2x^2y-x^2-2xy\)