Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2012}}\)
\(2A-A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1-\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
1/1+2 + 1/+1+2+3 + ... + 1/1+2+3+...+2014
= 1/(1+2).2:2 + 1/(1+3).3:2 + ... + 1/(1 + 2014).2014:2
= 2/2.3 + 2/3.4 + ... + 2/2014.2015
= 2.(1/2.3 + 1/3.4 + ... + 1/2014.2015)
= 2.(1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015)
= 2.(1/2 - 1/2015)
= 2.1/2 - 2.1/2015
= 1 - 2/2015
= 2013/2015
1/1+2 + 1/+1+2+3 + ... + 1/1+2+3+...+2014
= 1/(1+2).2:2 + 1/(1+3).3:2 + ... + 1/(1 + 2014).2014:2
= 2/2.3 + 2/3.4 + ... + 2/2014.2015
= 2.(1/2.3 + 1/3.4 + ... + 1/2014.2015)
= 2.(1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015)
= 2.(1/2 - 1/2015)
= 2.1/2 - 2.1/2015
= 1 - 2/2015
= 2013/2015
\(3x\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-1\\x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)
\(\frac{\frac{6}{5}+\frac{6}{35}-\frac{6}{125}-\frac{6}{2009}-\frac{6}{2011}}{\frac{7}{5}+\frac{7}{35}-\frac{7}{125}-\frac{7}{2009}-\frac{7}{2011}}\)
\(=\frac{6.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}{7.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}\)
\(=\frac{6}{7}\)
Tìm x
\(a,3x(2x+1)=0\)
\(\Rightarrow\hept{\begin{cases}3x=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
Vậy \(x=0\)hoặc \(x=\frac{-1}{2}\)
\(b.\frac{2}{3}-\frac{1}{3}(x-\frac{3}{2})-\frac{1}{2}(2x+1)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}-x(\frac{1}{3}+1)=5\)
\(\frac{4}{3}x=\frac{2}{3}-5\)
\(\frac{4}{3}x=\frac{-13}{3}\)
\(x=\frac{-13}{3}\div\frac{4}{3}\)
\(x=\frac{-13}{4}\)
Chúc ban học tốt
Bạn viết thêm số thứ 3 ở đầu dãy thì mới biết quy luật của dãy để tính chứ. Viết 2 số thế kia ai tính được :D
Bạn chỉ viết 2 số ở đầu dãy thì ko thể biết được quy luật của dãy. Bạn cần cho thêm 1 số nữa mới giải được chi tiết nhé!
\(\frac{1}{2^2}>\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(....\)
\(\frac{1}{2015^2}>\frac{1}{2014.2015}=\frac{1}{2014}-\frac{1}{2015}\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2015^2}>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
vì \(1-\frac{1}{2005}< 1\)
=> ĐPCM