K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

Trả lời:

( x - 3 ) ( x2 + 3x + 9 ) - ( x2 - 27x )

= x3 - 27 - x2 + 27x

= x3 - x2 + 27x - 27

27 tháng 7 2021

  ( 3 ----- 3)-----no biết       
 

27 tháng 7 2021

a, \(2x\left(x+2\right)-\left(x+2\right)\left(x-2\right)=\left(x+2\right)^2=x^2+4x+4\)

b, \(\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-27x\right)=x^3-27-x^2+27x\)

c, \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)=x^3+y^3-x^3+y^3=2y^3\)

27 tháng 7 2021

2𝑥(𝑥+2)−(𝑥+2)(𝑥−2)

2𝑥^2+4𝑥−(𝑥+2)(𝑥−2)

2𝑥^2+4𝑥−(𝑥(𝑥−2)+2(𝑥−2))

2𝑥^2+4𝑥−(𝑥^2−2𝑥+2(𝑥−2))

2𝑥^2+4𝑥−(𝑥^2−2𝑥+2𝑥−4)

2𝑥^2+4𝑥−(𝑥^2−4)

2𝑥^2+4𝑥−𝑥^2+4

2𝑥^2−𝑥^2+4𝑥+4

\(a,\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-1\right)\left(x+27\right)\)

\(=\left(x^3-27\right)-x^3-27x^2+x+27=x-27x^2\)

\(b,\left(3-x\right)^3-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=27-9x+3x^2-x^3-\left(x^3+27\right)=3x^2-9x-2x^3\)

\(c,\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-3\right)\left(x+3\right)\)

\(=\left(x^3-8\right)-x\left(x^2-9\right)=x^3-8-x^3+9x=9x-8\)

26 tháng 7 2021

a) (x-3)(x2+3x+9)-(x2-1)(x+27)

=(x3-27)-(x3+27x2-x-27)

=x3-27-x3-27x2+x+27

=-27x2+x

=x(-27x+1)

b) (3-x)3-(x+3)(x2-3x+9)

=27-27x+9x2-x3-x3-27

=-2x3+9x2-27x

=x(-2x+9x-27)

c) (x-2)(x2+2x+4)-x(x-3)(x+3)

=x3-8-x(x2-9)

=x3-8-x3+9x

=9x-8

#H

Bài 9:

a) Ta có: \(A=\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)

\(=4x^2+4xy+y^2-4x^2+y^2-xy-y^2\)

\(=3xy-y^2\)

\(=3\cdot\left(-2\right)\cdot3-3^2=-18-9=-27\)

b) Ta có: \(B=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)

\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)

\(=\dfrac{31}{2}\)

Bài 7: 

a) \(498^2=\left(500-2\right)^2=250000-2000+4=248004\)

b) \(93\cdot107=100^2-7^2=10000-49=9951\)

c) \(163^2+74\cdot163+37^2=\left(163+37\right)^2=200^2=40000\)

d) \(1995^2-1994\cdot1996=1995^2-1995^2+1=1\)

e) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(=18^8-18^8+1=1\)

f) \(125^2-2\cdot125\cdot25+25^2=\left(125-25\right)^2=100^2=10000\)

5 tháng 10 2020

a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3

b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81

c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3

d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2

e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2

= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )

= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6

= -3x2 + 39x + 6

= -3( x2 - 13x - 2 )

f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3

= x3 + y3 + x3 - y3 - 2x3

= 0

g) x2 + 2x( y + 1 ) + y2 + 2y + 1

= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )

= x2 + 2x( y + 1 ) + ( y + 1 )2

= ( x + y + 1 )2

= [ ( x + y ) + 1 ]2

= ( x + y )2 + 2( x + y ) + 1

= x2 + 2xy + y2 + 2x + 2y + 1

23 tháng 7 2021

`P=27-27x+9x^2-x^3=3^3-3.3^2 .x+3.3.x^2-x^3=(3-x)^3`

Thay `x=-17`: `(3+17)^3=20^3=8000`

`Q=x^3+3x^2+3x=x(x^2+3x+3)`

Thay `x=99`: `Q=99 . (99^2 +3.99+3)=99. 10101=999 999`

Bài 2: 

a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)

\(=7^3+2\cdot7^2=441\)

19 tháng 8 2019

Lời giải :

1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

19 tháng 8 2019

Lời giải :

2. \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy...

19 tháng 8 2019

1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)

\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

2) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)

\(A=8\)

Vậy: biểu thức không phụ thuộc vào biến

19 tháng 8 2019

1) \(\left(x+5\right)^3-x^3-125\)

\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)

\(=15x^2+75x\)

2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)

\(\Leftrightarrow24x+10=0\)

\(\Leftrightarrow24x=0-10\)

\(\Leftrightarrow24x=-10\)

\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)

\(\Rightarrow x=-\frac{5}{12}\)

3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)

\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)

\(=0\)

Vậy: biểu thức không phụ thuộc vào biến