K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3}+1}-1\right)}{\sqrt{3}+1-1}\)

\(=\dfrac{2\sqrt{3}}{\sqrt{3}}=2\)

b: \(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+1\right)\)

\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+1\right)\)

\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+1\right)=\left(\sqrt{6}-11\right)\left(\sqrt{6}+1\right)\)

\(=6+\sqrt{6}-11\sqrt{6}-11=-5-10\sqrt{6}\)

c: \(C=4\cdot\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)

\(=4\cdot2\sqrt{5}-3\cdot5\sqrt{5}+5\cdot3\sqrt{5}-3\sqrt{5}\)

\(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)

a) \(E=2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}.\)

  \(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}-12\sqrt{5\sqrt{3}}}\)

  \(=0\)

b) \(F=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}.\)

Vì \(=\frac{5}{12}-\frac{1}{\sqrt{6}}=\frac{5-2\sqrt{6}}{12}=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}\)

\(\frac{1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}=\frac{2\sqrt{3}+\sqrt{2}}{6}\)

Nên \(F=\frac{2\sqrt{3}+\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\frac{3\sqrt{3}}{6}=\frac{\sqrt{3}}{2}\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Lời giải:
a.

\(=2\sqrt{4^2.5}+3\sqrt{3^2.5}-\sqrt{7^2.5}=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)

\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}=10\sqrt{5}\)

b.

\(=\frac{3(2-\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}+\frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}+\frac{6\sqrt{3}}{3}\)

\(=\frac{6-3\sqrt{3}}{1}+\frac{13(4+\sqrt{3})}{13}+2\sqrt{3}=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)

\(=10\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

c.

\(=\left[\frac{\sqrt{7}(\sqrt{2}-1)}{\sqrt{2}-1}+\frac{\sqrt{5}(\sqrt{3}-1)}{\sqrt{3}-1}\right].(\sqrt{7}-\sqrt{5})\)

\(=(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})=7-5=2\)

d.

\(=|2+\sqrt{3}|-\sqrt{5^2-2.5\sqrt{3}+3}=|2+\sqrt{3}|-\sqrt{(5-\sqrt{3})^2}\)

\(=|2+\sqrt{3}|-|5-\sqrt{3}|=2+\sqrt{3}-(5-\sqrt{3})=-3+2\sqrt{3}\)

 

a) Ta có: \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)

\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)

\(=10\sqrt{5}\)

b) Ta có: \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)

\(=3\left(2-\sqrt{3}\right)+4+\sqrt{3}+2\sqrt{3}\)

\(=6-2\sqrt{3}+4+3\sqrt{3}\)

\(=10+\sqrt{3}\)

c) Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=7-5=2

d) Ta có: \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)

\(=2+\sqrt{3}-5+\sqrt{3}\)

\(=-3+2\sqrt{3}\)

6 tháng 7 2021

a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)

\(=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)

\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)

\(=10\sqrt{5}\)

b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)

\(=\dfrac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\dfrac{13\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}+\dfrac{6\sqrt{3}}{\sqrt{3}.\sqrt{3}}\)

\(=\dfrac{3\left(2-\sqrt{3}\right)}{4-3}+\dfrac{13\left(4+\sqrt{3}\right)}{16-3}+\dfrac{6\sqrt{3}}{3}\)

\(=3\left(2-\sqrt{3}\right)+\dfrac{13\left(4+\sqrt{3}\right)}{13}+2\sqrt{3}\)

\(=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)

\(=10\)

c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)

\(=\left(\sqrt{7}+\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)

\(=7-5=2\)

d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)

\(=\left|2+\sqrt{3}\right|-\sqrt{5^2-2.5.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\left|2+\sqrt{3}\right|-\left(5-\sqrt{3}\right)^2\)

\(=\left|2+\sqrt{3}\right|-\left|5-\sqrt{3}\right|\)

\(=2+\sqrt{3}-\left(5-\sqrt{3}\right)\) (vì \(\left|2+\sqrt{3}\right|\ge0,\left|5-\sqrt{3}\right|\ge0\))

\(=2+\sqrt{3}-5+\sqrt{3}\)

\(=2\sqrt{3}-3\)

24 tháng 11 2021

\(a,=\dfrac{\sqrt{5}+1+\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}}{4}=\dfrac{\sqrt{5}}{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)^2}+\left|2-\sqrt{5}\right|=3-\sqrt{5}+\sqrt{5}-2=1\\ c,=\dfrac{2\left(\sqrt{5}-\sqrt{3}\right)}{2}-\dfrac{-\sqrt{3}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}=\sqrt{5}-\sqrt{3}+\sqrt{3}=\sqrt{5}\)

1 tháng 10 2023

\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)

\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)

\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)

\(A=2^2-\left(\sqrt{5}\right)^2\)

\(A=4-5\)

\(A=-1\)

____

\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)

\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

\(B=6-121\)

\(B=-115\)

b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)

\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)

\(=\dfrac{3-\sqrt{3}}{3}\)

9 tháng 11 2021

\(a,=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\\ c,=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

23 tháng 7 2023

\(a,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}+\dfrac{3.\left(\sqrt{6}-\sqrt{5}\right)}{6-5}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+3\left(\sqrt{6}-\sqrt{5}\right)\\ =\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\\ =4\sqrt{6}-2\sqrt{5}\)

\(b,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\sqrt{4+\sqrt{15}}}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{2}{\sqrt{8+2.\sqrt{3}.\sqrt{5}}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\left|\sqrt{3}-\sqrt{2}\right|}-\dfrac{2}{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\left|\sqrt{5}+\sqrt{3}\right|}\)

\(=\sqrt{5}+\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{3-2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{3}\\ =0\)

a: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+\dfrac{3\left(\sqrt{6}-\sqrt{5}\right)}{1}\)

\(=\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\)

\(=-2\sqrt{5}+4\sqrt{6}\)

b: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)

\(=\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)

\(=\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{2}\)

=2căn 5-2căn 3

23 tháng 6 2021

a) \(\sqrt{\dfrac{1}{8}}\cdot\sqrt{2}\cdot\sqrt{125}\cdot\sqrt{\dfrac{1}{5}}\) = \(\sqrt{\dfrac{1}{8}\cdot2}.\sqrt{125\cdot\dfrac{1}{5}}=\sqrt{\dfrac{1}{4}}.\sqrt{25}=\dfrac{1}{2}\cdot5=2,5\)

23 tháng 6 2021

b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2-1}=1\)