K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 6 2019

a/ \(=\sqrt{36^2\left(1-a\right)^2}=36.\left|1-a\right|=36\left(a-1\right)=36a-36\)

b/ \(=\frac{1}{a-b}.a^2\left|a-b\right|=\frac{1}{a-b}.a^2\left(a-b\right)=a^2\)

c/ \(=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}+\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\frac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

Bài 1: 

a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)

Bài 2: 

\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{2}{3}\)

 

a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)

\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)

\(=36\sqrt{1-a^2}\)

c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)

\(=15a-3a=12a\)

b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)

\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)

\(=a^2\)

d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)

\(=a^2-6a+9-\sqrt{36a^2}\)

\(=a^2-6a+9-\left|6a\right|\)

\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)

31 tháng 3 2017

a) = = 0,6.│a│

Vì a < 0 nên │a│= -a. Do đó = -0,6a.

b) = . = ││.│3 - a│.

≥ 0 nên │b│= . Vì a ≥ 3 nên 3 - a ≤ 0, do đó │3 - a│= a - 3.

Vậy = (a - 3).

c) = = = √81.√16.

= 9.4.│1 - a│

Vì a > 1 nên 1 - a < 0. Do đó │1 - a│= a -1.

Vậy = 36(a - 1).

d) : = : ( = : (.│a - b│)

Vì a > b nên a -b > 0, do đó│a - b│= a - b.

Vậy : = : ((a - b)) = .

3 tháng 4 2017

a) = = 0,6.│a│

Vì a < 0 nên │a│= -a. Do đó = -0,6a.

b) = . = ││.│3 - a│.

≥ 0 nên │b│= . Vì a ≥ 3 nên 3 - a ≤ 0, do đó │3 - a│= a - 3.

Vậy = (a - 3).

c) = = = √81.√16.

= 9.4.│1 - a│

Vì a > 1 nên 1 - a < 0. Do đó │1 - a│= a -1.

Vậy = 36(a - 1).

d) : = : ( = : (.│a - b│)

Vì a > b nên a -b > 0, do đó│a - b│= a - b.

Vậy : = : ((a - b)) = .


25 tháng 6 2021

\(A=\left|2-\sqrt{7}\right|+7-2\sqrt{7}+1\)

\(=\sqrt{7}-2+8-2\sqrt{7}\) \(=6-\sqrt{7}\)

\(B=3\cdot1,5-4\cdot\left|3-\sqrt{2}\right|\) \(=4,5-4\left(3-\sqrt{2}\right)\)

\(=4,5-12+4\sqrt{2}\) \(=4\sqrt{2}-7,5\) 

Ta có: \(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)

\(=\sqrt{7}-2+8-2\sqrt{7}\)

\(=6-\sqrt{7}\)

20 tháng 10 2020

a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}=\left|2-\sqrt{3}\right|+\sqrt{4+4\sqrt{3}+3}\)

\(=2-\sqrt{3}+\sqrt{\left(2+\sqrt{3}\right)^2}=2-\sqrt{3}+\left|2+\sqrt{3}\right|\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\left[\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right].\frac{1}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right].\frac{1}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right).\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\left(a-2\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}+2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)

20 tháng 10 2020

a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}\)

\(=\left|2-\sqrt{3}\right|+\sqrt{3+4\sqrt{3}+4}\)

\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=2-\sqrt{3}+\left|\sqrt{3}+2\right|\)

\(=2-\sqrt{3}+\sqrt{3}+2\)

\(=4\)

b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)\(\hept{\begin{cases}a,b\ge0\\a\ne b\end{cases}}\))

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\left(a-2\sqrt{ab}+b\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{a-2\sqrt{ab}+b}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{a-2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{a-2\sqrt{ab}+b+2\sqrt{ab}-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{a-b}{a-b}=1\)