K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

C1: \(\sqrt{\left(4+2\sqrt{3}\right)}-\sqrt{\left(13+4\sqrt{3}\right)}\)

=\(\sqrt{\left(4+2\sqrt{3}\right)}-\sqrt{\left(13+2\sqrt{12}\right)}\)

=\(\sqrt{\left(\sqrt{1}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{1}+\sqrt{12}\right)^2}\)

=\(\left|\sqrt{1}+\sqrt{3}\right|-\left|\sqrt{1}+\sqrt{12}\right|\)

= \(\sqrt{1}+\sqrt{3}-\sqrt{1}+\sqrt{12}\)

=\(-\sqrt{12}+\sqrt{3}\)=\(-\sqrt{3}\)

23 tháng 8 2019

C2,3 Tương tự

7 tháng 8 2016

\(\sqrt{13+4\sqrt{3}}\cdot\sqrt{28+6\sqrt{3}}-5\sqrt{3}\)

\(=\sqrt{\left(2\sqrt{3}+1\right)^2}\cdot\sqrt{\left(3\sqrt{3}+1\right)^2}-5\sqrt{3}\)

\(=\left(2\sqrt{3}+1\right)\left(3\sqrt{3}+1\right)-5\sqrt{3}\)

\(=6\cdot3+2\sqrt{3}+3\sqrt{3}+1-5\sqrt{3}\)

\(=18+1=19\)

24 tháng 8 2017

\(B=\sqrt{18-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{12+5+1-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{12+1-4\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{5}+1-2\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=2\sqrt{3}-1-\sqrt{5}-2\sqrt{3}+1=-\sqrt{5}\)

23 tháng 8 2017

Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp. 
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x 
Số ban đầu có dạng 10.3x + x = 31x 
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x 
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK) 
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31. 
2) Tóm tắt thôi nhé. 
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10 
Số mới sau khi đổi chỗ là 10b + a 
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36 
được a = 7; b = 3. Vậy số cần tìm là 73. 
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5 
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a 
=> 9a = 1782 => a = 198 => Số ban đầu là 1985

25 tháng 6 2017

a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)

= \(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(2-\sqrt{3}+\sqrt{3}-1\) = \(1\)

b) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)

= \(3-\sqrt{6}+2\sqrt{6}-3\) = \(\sqrt{6}\)

c) \(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)

= \(\dfrac{15\sqrt{200}}{\sqrt{10}}-\dfrac{3\sqrt{450}}{\sqrt{10}}+\dfrac{2\sqrt{50}}{\sqrt{10}}\)

= \(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\)

= \(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\) = \(23\sqrt{5}\)

1: \(=\sqrt{5}-2-3-\sqrt{5}=-5\)

2: \(=3\sqrt{2}+\sqrt{10}+3\sqrt{2}-\sqrt{10}=6\sqrt{2}\)

3: \(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}-\sqrt{5}=2\sqrt{2}-4\sqrt{3}-2\sqrt{5}\)

 

1: \(=\sqrt{5}-2-3-\sqrt{5}=-5\)

2: \(=3\sqrt{2}+\sqrt{10}+3\sqrt{2}-\sqrt{10}=6\sqrt{2}\)

3: \(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}-\sqrt{5}=2\sqrt{2}-4\sqrt{3}-2\sqrt{5}\)

 

15 tháng 6 2016

A = ((20 + 1) . 20 : 2) . 2 = 420

B = (25 + 20) . 6  : 2 = 135

C = ( 33 + 26) . 8 : 2 = 236

D = (1 + 100) .100 : 2 = 5050

15 tháng 6 2016

Toán lướp 9 dễ như vậy à bạn

Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)

=1