Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{13\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}+\frac{6}{\sqrt{3}}\)
\(=6-3\sqrt{3}+4+\sqrt{3}+\frac{6}{\sqrt{3}}\)
\(=10-2\sqrt{3}+\frac{6}{\sqrt{3}}\)
\(=\frac{10\sqrt{3}-6+6\sqrt{3}}{\sqrt{3}}\)
\(=\frac{16\sqrt{3}-6}{\sqrt{3}}\)
Sửa đề :
\(P=\sqrt{x+5+2\sqrt{x+4}}-\sqrt{x+5-2\sqrt{x+4}}\)\(\left(x\ge-4\right)\)
\(=\sqrt{\left(x+4\right)+2\sqrt{x+4}+1}-\sqrt{\left(x+4\right)-2\sqrt{x+4}+1}\)
\(=\sqrt{\left(\sqrt{x+4}+1\right)^2}-\sqrt{\left(\sqrt{x+4}-1\right)^2}\)
\(=\left|\sqrt{x+4}+1\right|-\left|\sqrt{x+4}-1\right|\)
\(=\sqrt{x+4}+1-\sqrt{x+4}+1=2\)
Vậy \(P=2\)
làm tiếp nè:
\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)
*)Nếu \(\sqrt{x-1}\)>3<=>x-1>9<=>x>10 thì \(\sqrt{x-1}\)-2>0 \(\sqrt{x-1}\)-3>0
Ta có:|\(\sqrt{x-1}\)-2|+|\(\sqrt{x-1}\)-3|=\(\sqrt{x-1}\)-2+\(\sqrt{x-1}\)-3=2\(\sqrt{x-1}\)-5
*)Nếu 2<\(\sqrt{x-1}\)<3<=>4<x-1<9... làm tiếp đi bận mất rồi
P=\(\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\left(\frac{\sqrt{x}-3}{2\sqrt{x}-x}\right)=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{4-x}\right).\frac{2\sqrt{x}-x}{\sqrt{x}-3}=\left[\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right].\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}=\frac{\left(4x+8\sqrt{x}\right).\sqrt{x}.\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\frac{4x\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\frac{4x}{\sqrt{x}-3}\)
\(a,A=\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
\(=\sqrt{\left(\sqrt{5}^2+2\sqrt{5}+2\sqrt{2}\cdot\sqrt{5}\right)+\sqrt{2}^2+2\sqrt{2}\cdot1+1^2}\)
\(=\sqrt{\sqrt{5}^2+2\cdot\sqrt{5}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)^2}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}\)
\(=\sqrt{5}+\sqrt{2}+1\)
\(b,B=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\frac{3\cdot\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}{\sqrt{6}+1}+\frac{2\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}{\sqrt{6}-2}-\frac{4\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left[3\cdot\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}+11\right)\left(\sqrt{6}-11\right)=-115\)
\(A^2=\left(\sqrt{3-1}\right)^2\cdot\left(\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\right)^2\)
\(A^2=2\cdot\frac{14-6\sqrt{3}}{5+\sqrt{3}}\)
\(A^2=2\cdot\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}\)
\(A^2=2\cdot\frac{70-30\sqrt{3}-14\sqrt{3}+18}{22}\)
\(A^2=\frac{88-44\sqrt{3}}{11}\)
\(A=\sqrt{\frac{88-44\sqrt{3}}{11}}\)
=(căn 3-1)^2