K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-x\left(x^2-1\right)-x+2\)

\(=x^3-8-x^3+x-x+2\)

\(=-6\)

22 tháng 2 2022

`Answer:`

`a)`

`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`

`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`

`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`

`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`

`=>A=-2x^2+28x-6`

`b)`

`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`

`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`

`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`

`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`

Thay `x=-7` vào ta được:

`B=10(-7)^2-2(-7)^3-7(-7)-6`

`=>B=10.49-2(-343)+49-6`

`=>B=490+686+49-6`

`=>B=1219`

18 tháng 12 2021

Answer:

\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(2x-1\right)\)

\(=(4x^2+4x+1)+(4x^2-4x+1)-2(4x^2-1)\)

\(=4x^2+4x+1+4x^2-4x+1-8x^2+2\)

\(=(4x^2+4x^2-8x^2)+(4x-4x)+(1+1+2)\)

\(=4\)

\((x-1)^3-(x+2)(x^2-2x+4)+3(x-1)(x+1)\)

\(=(x^3-3x^2+3x-1)-(x^3+8)+3(x^2-1)\)

\(=x^3-3x^2+3x-1-x^3-8+3x^2-3\)

\(=(x^3-x^3)+(-3x^2+3x^2)+3x+(-1-8-3)\)

\(=3x-12\)

6 tháng 6 2023

(a) Điều kiện : \(x\ne-1.\)

Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)

\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)

\(=x\left(x+1\right)+1-2x-1\)

\(=x^2-x.\)

Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)

 

(b) Ta có : \(P=x^2-x\)

\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)

30 tháng 10 2016

(3x - 1)2 + (x + 3)(2x - 1)

= 9x2 - 6x + 1 + 2x2 - x + 6x - 3

= 11x2 - x - 2

(x - 2)(x2 + 2x + 4) - x(x2 - 2)

= x3 - 8 - x3 + 2x

= 2x - 8

30 tháng 10 2016

b) B = ( x - 2)(x2 + 2x + 4) - x ( x2 -2 )

= x3 - 8 - x3 + 2x

= 2x - 8

20 tháng 9 2020

kết quả x6-64

20 tháng 9 2020

( x - 2 )( x2 - 2x + 4 )( x + 2 )( x2 + 2x + 4 )

= [ ( x - 2 )( x2 + 2x + 4 ) ][ ( x + 2 )( x2 - 2x + 4 ) ]

= ( x3 - 8 )( x3 + 8 )

= ( x3 )2 - 82

= x6 - 64 

11 tháng 7 2018

b/ \(4\left(x-1\right)\left(x+1\right)-5x\left(x-2\right)+x^2\)

\(4\left(x^2-1\right)-5x^2+10x+x^2\)

\(4x^2-4-5x^2+10x+x^2\)

\(10x-4\)

\(2\left(5x-2\right)\)

c/ \(\left(3-2x\right)\left(x-2\right)+4\left(x-1\right)\left(x-3\right)-2\left(x-2\right)\left(x+2\right)\)

\(3x-6-2x^2+4x+4\left(x^2-4x-4\right)-2\left(x^2-4\right)\)

\(3x-6-2x^2+4x+4x^2-16x-16-8x^2-18\)

\(-9x-12\)

\(-3\left(3x+4\right)\)

26 tháng 2 2022

(-3).8/8.6 rút gọn

13 tháng 6 2019

a/\(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+1-8x^2+24x-18+4\)

\(=-4x^2+20x-13\)

b/ \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)

\(=2x^2-2y^2+2x^2+2y^2\)

\(=4x^2\)

chúc bạn học tốt