Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
\(B=(x+1)^2-2(2x-1)(1+x)+4x^2-4x+1\)
`= x^2 + 2x + 1 - 2(2x^2 + x - 1) + 4x^2 - 4x + 1`
`= 5x^2 - 2x + 2 - 4x^2 - 2x + 2`
`= x^2 - 4x + 4`
\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)
\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(x+1-2x+1\right)^2\)
\(=\left(2-x\right)^2\)
b: \(=\left(x^2+3x+1-3x+1\right)^2=\left(x^2+2\right)^2\)
a: \(P=\dfrac{x^2+x-x^2+x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)
\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)
\(=0-11x+24\)
\(=-11x+24\)
\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)
\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)
\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)
\(=0+0+5\)
\(=5\)
a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)
b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)
A = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.
B = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.