K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

đề bài sai thì phải

4 tháng 6 2017

bạn Hoàng Thanh Tuấn nói đúng đấy

2 tháng 10 2021

a)=1-4a
b) = 2x - 4y
c) = 2x - 2 (nếu x>5)
=2x(nếu x<5)
 

3 tháng 10 2021

-1.       2x.        2x

13 tháng 8 2019

\(\Leftrightarrow x-2y-\sqrt{\left(x-2y\right)}\)

\(\Leftrightarrow x-2y-x+2y\)

\(\Leftrightarrow\)0

22 tháng 8 2019

Thiếu mũ rùi bn

7 tháng 8 2023

a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left|x-2y\right|\)

TH1: \(x-2y--\left(x-2y\right)\)

\(=x-2y+x-2y\)

\(=2x-4y\)

TH2: \(x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

b) \(x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-4\right)^2}\)

\(=x^2+\left|x^2-4\right|\)

TH1: 

\(x^2+-\left(x^2-4\right)\)

\(=x^2-x^2+4\)

\(=4\)

TH2: 

\(x^2+\left(x^2-4\right)\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)

\(=2x-1-\sqrt{x-5}\)

d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))

\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)

\(=\sqrt{x^2-2}\)

e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)

\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+1\)

TH1: 

\(x^2-4+1\)

\(=x^2-3\)

TH2:

\(-\left(x^2-4\right)+1\)

\(=-x^2+4+1\)

\(=-x^2+5\)

a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)

=x-2y-|x-2y|

Khi x>=2y thì A=x-2y-x+2y=0

Khi x<2y thì A=x-2y+x-2y=2x-4y

b: \(B=x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

B=x^2+x^2-4=2x^2-4

TH2: -2<=x<=2

B=x^2+4-x^2=4

c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)

d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)

2 tháng 7 2017

bổ sung: ý a) điều kiện x<2

11 tháng 12 2017

nhanh thế

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

Lời giải:

a)

\(\sqrt{1-4a+4a^2}-2a=\sqrt{1-2.2a+(2a)^2}-2a\)

\(=\sqrt{(2a-1)^2}-2a=|2a-1|-2a=(2a-1)-2a=-1\)

(do $a\geq \frac{1}{2}$ nên $|2a-1|=2a-1$)

b)

\(x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{(x-2y)^2}=x-2y-|x-2y|\)

\(=x-2y-(2y-x)=2(x-2y)\)

(do $x< 2y$ nên $|x-2y|=-(x-2y)=2y-x$)

c)

\(x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{(x^2)^2-2.4.x^2+4^2}\)

\(=x^2+\sqrt{(x^2-4)^2}=x^2+|x^2-4|=x^2+(4-x^2)=4\)

(do $x^2< 4$ nên $|x^2-4|=4-x^2$)

22 tháng 7 2017

1,Sửa lại điều kiện,mình nghĩ là: \(x \geq 12\)(chắc bạn ghi nhầm)

\(x \geq 12\) \(\Rightarrow\) \(x-12 \geq 0\) \(\Rightarrow\) \(\sqrt{\left(x-12\right)^2}=x-12\)

Ta có \(4x+\sqrt{\left(x-12\right)^2}\) = \(4x+x-12\) = 5x-12

2, Dư bình phương ở phần căn

\(x \geq 2y\) \(\Rightarrow\) \(x-2y \geq 0\)

Ta có : \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)}=x+2y-\sqrt{\left(x-2y\right)^2}=x+2y-\left(x-2y\right)=x+2y-x+2y=4y\)

22 tháng 7 2017

à cám ơn bạn nha!!!

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. Viết thế này khó đọc quá.

28 tháng 10 2023

\(x+2y-\sqrt{x^2-4xy+4y^2}\)(sửa đề)

\(=x+2y-\sqrt{\left(x-2y\right)^2}\)

\(=x+2y-\left|x-2y\right|\)

\(=x+2y-\left(x-2y\right)\left(vì.x\ge2y\right)\)

\(=x+2y-x+2y\)

\(=4y\)

28 tháng 10 2023

\(x+2y-\sqrt{x^2-4xy+4y^2}^2\)

\(=x+2y-\sqrt{\left(x-2y\right)^2}^2\)

\(=x+2y-\left(x-2y\right)^2\)

\(=x+2y-x^2+4xy-4y^2\)