K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2021

\(=\left(\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}+1\right)=1\)

Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x-1}\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}-1}{x-1}\)

\(=\dfrac{x+\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{x+1}{\sqrt{x}-1}\)

13 tháng 5 2021

`A=((x\sqrtx-1)/( x-\sqrtx)-(x\sqrtx+1)/(x+\sqrtx)(\sqrtx/(\sqrtx-1)-1/(\sqrtx+1))(x>0,x ne 1)`
`=(((\sqrtx-1)(x+\sqrtx+1))/( x-\sqrtx)-((\sqrtx+1)(x-\sqrtx+1))/(x+\sqrtx)((x+\sqrtx-\sqrtx+1)/(x-1))`
`=((x+\sqrtx+1+x-\sqrtx+1)/\sqrtx) .((x+1) /( x-1)) `
`=((2x+2)/\sqrtx).((x+1) /(x-1 ) )`
`=( 2(x+1)^2) /(\sqrtx(x-1))`

13 tháng 5 2021

`A=((x\sqrtx-1)/( x-\sqrtx)-(x\sqrtx+1)/(x+\sqrtx)(\sqrtx/(\sqrtx-1)-1/(\sqrtx+1))(x>0,x ne 1)`
`=(((\sqrtx-1)(x+\sqrtx+1))/( x-\sqrtx)-((\sqrtx+1)(x-\sqrtx+1))/(x+\sqrtx))((x+\sqrtx-\sqrtx+1)/(x-1))`
`=((x+\sqrtx+1+x-\sqrtx+1)/\sqrtx) .((x+1) /( x-1)) `
`=((2x+2)/\sqrtx).((x+1) /(x-1 ) )`
`=( 2(x+1)^2) /(\sqrtx(x-1))`

6 tháng 7 2021

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\text{x > 0, x ≠ 1}\)

\(A=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

ĐK: $x\geq 0; x\neq 1$

\(A=\left[\frac{(\sqrt{x}-1)(x+2\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}+2)}\right].\frac{\sqrt{x}-1}{(\sqrt{x}-1)(2\sqrt{x}+3)}\)

\(=\left(\frac{x+2\sqrt{x}+2}{\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{1}{2\sqrt{x}+3}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1}{2\sqrt{x}+3}=\frac{(\sqrt{x}+1)^2}{(\sqrt{x}+1)(2\sqrt{x}+3)}=\frac{\sqrt{x}+1}{2\sqrt{x}+3}\)

7 tháng 7 2021

\(=>A=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left[\dfrac{\sqrt{x}+1-2}{x-1}\right]\)

\(=>A=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}\)

b,\(=>\dfrac{1}{\sqrt{x}}=\dfrac{1}{2}=>\sqrt{x}=2=>x=\sqrt{2}\left(tm\right)\)

7 tháng 7 2021

\(=>x=4\left(tm\right)\)

NV
22 tháng 3 2022

\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)

\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)

\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)

8 tháng 8 2021

a) \(P=\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}=\dfrac{\sqrt{5}+2+\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\dfrac{2\sqrt{5}}{\left(\sqrt{5}\right)^2-2^2}=2\sqrt{5}\)

b)\(Q=\left(1+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\cdot\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}-1+\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}\)

\(Q=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)

Tick hộ nha

8 tháng 8 2021

ok

28 tháng 6 2021

`a)(sqrtx-3)/(sqrtx-2)-(2sqrtx-1)/(sqrtx-1)+(x-2)/(x-3sqrtx+2)`

`=(x-4sqrtx+3-(2sqrtx-1)(sqrtx-2)+x-2)/(x-3sqrtx+2)`

`=(2x-4sqrtx+1-2x+5sqrtx-2)/(x-3sqrtx+2)`

`=(sqrtx-1)/(x-3sqrtx+2)`

`=1/(sqrtx-2)`

`b)((x+2)/(xsqrtx-1)-sqrtx/(x+sqrtx+1)+1/(1-sqrtx)):(sqrtx-1)/2`

`=((x+2-x+sqrtx-x-sqrtx-1)/(xsqrtx-1))*2/(sqrtx-1)`

`=(1-x)/(xsqrtx-1)*2/(sqrtx-1)`

`=(-2(sqrtx+1))/(x+sqrtx+1)`

a) Ta có: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+4\sqrt{x}+\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

b) Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-\sqrt{x}+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-2\sqrt{x}-2}{x\sqrt{x}-1}\)

Bài 1:

\(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{5+2\sqrt{5}+1}\)

\(=\left|4-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=4-\sqrt{5}+\sqrt{5}+1=5\)

Bài 2:

a: ĐKXĐ: x>=3

\(\sqrt{x-3}=6\)

=>x-3=36

=>x=36+3=39(nhận)

b: ĐKXĐ: \(x\in R\)

\(\sqrt{\left(x-3\right)^2}=12\)

=>\(\left|x-3\right|=12\)

=>\(\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)

Bài 3:

a: \(P=\left(\dfrac{3-x\sqrt{x}}{3-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\dfrac{3-\sqrt{x}}{3-x}\right)\)

\(=\dfrac{3-x\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\cdot\dfrac{3-\sqrt{x}}{3-x}\)

\(=\dfrac{3-x\sqrt{x}+3\sqrt{x}-x}{3-x}\)

\(=\dfrac{-\sqrt{x}\left(x-3\right)-\left(x-3\right)}{-\left(x-3\right)}=\dfrac{\left(x-3\right)\left(\sqrt{x}+1\right)}{x-3}=\sqrt{x}+1\)

b: \(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right):\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

c: \(A=\sqrt{3x-1}+3\cdot\sqrt{12x-4}-\sqrt{6^2\left(3x-1\right)}+\sqrt{5}\)

\(=\sqrt{3x-1}+6\sqrt{3x-1}-6\sqrt{3x-1}+\sqrt{5}\)

\(=\sqrt{3x-1}+\sqrt{5}\)

d: \(A=\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\)

\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{2\left(a-2\right)}{a+2}\)