K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

a) (x+3)(x-4)-(x-1)(x+2)

=(x^2-4x+3x-12)-(x^2+2x-x-2)

=(x^2-x-12)-(x^2+x-2)

=x^2-x-12-x^2-x+2

=-2x-10=-2(x+5)

b) a^3+b^3+3a^2b+3ab^2

=(a+b)^3

5 tháng 2 2016

30

ủng hộ mk nha các bạn

a: A=-a+b-c+a+b+c

=2b

b: Khi a=1; b=-1; c=-2 thì A=2*(-1)=-2

9 tháng 8 2023

Thay dấu * bằng chữ số thích hợp để mỗi số sau là số nguyên tố:
a) 3*; b) *1 ; c) 1*5 .

14 tháng 1 2018

 a) A= -a+b-c + a+b+c = 2b 
b) Vì giá trị của A = không phụ thuộc vào a hay c nên A=2b=2.(-1)= -2

a, Rút gọn 

A = ( - a - b - c ) - ( - a - b - c )

   = - a - b - c - a - b - c 

  = 2b

4 tháng 4 2018

mk nhịu

4 tháng 4 2018

a)    \(\frac{28\times7-45\times7+7\times18}{45\times14}\)

\(=\frac{7\left(28-45+7\right)}{45\times14}\)

\(=\frac{7\times\left(-10\right)}{45\times14}=\frac{-1}{9}\)

b)   \(\frac{12.3-2.6}{4.5.6}\)

\(=\frac{2.6.3-2.6}{4.5.6}\)

\(=\frac{2.6\left(3-1\right)}{2.2.5.6}\)

\(=\frac{2.6.2}{2.2.5.6}\)\(=\frac{1}{5}\)

18 tháng 7 2015

bài 1 : a +b , rút gọn và tính

(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b-2.1+2.-1=-2+-2 = -4

 

A = 2 + 3\(\sqrt[]{x^2+1}\) 

Ta có: x2 \(\ge\) 0, \(\forall\) x => x\(\ge\) 1, \(\forall\) x

=> \(\sqrt[]{x^2+1}\) \(\ge\) \(\sqrt[]{1}\) 

=> 3\(\sqrt[]{x^2+1}\) \(\ge\) 3

=> 2 + 3\(\sqrt[]{x^2+1}\) \(\ge\) 5

Vậy A đạt GTNN khi bằng 5

Dấu "=" xảy ra khi x = 0

6 tháng 8 2018

B= \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).....\left(1-\dfrac{1}{20}\right)\)

B= \(\dfrac{1}{2}.\dfrac{2}{3}.....\dfrac{19}{20}\)

B= \(\dfrac{1.2.....19}{2.3.....20}\)

B= \(\dfrac{1}{20}\)

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$

$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$

$\Rightarrow A+3A=3^{2012}+3$

$\Rightarrow 4A=3^{2012}+3$

$\Rightarrow A=\frac{3^{2012}+3}{4}$

b.

Từ phần a suy ra $4A-3=3^{2012}$

Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$

$\Rightarrow 81^{503}=81^x$

$\Rightarrow x=503$

c.

$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$

$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$

$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$

$=3+7(-3^2+3^5-3^8+....+3^{2009})$

$\Rightarrow A$ chia 7 dư 3.

d.

$4A=3^{2012}+3$

Có: $3^2\equiv -1\pmod {10}$

$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$

$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$

$\Rightarrow 4A$ có tận cùng là 4

$\Rightarrow A$ có tận cùng là 1.

24 tháng 2 2020

a) Với x<1 thì A=-(x-1) - 3x-2=-x+1-3x-2=-4x-1

Vời x\(\ge\)0 thì A= (x-1) - 3x-2=x-1-3x-2=-2x-3

b) c,d làm như câu a nhé