Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+2)(x−2)−(x−3)(x+1)
=x2−22−(x2+x−3x−3)
=x2−4−x2−x+3x+3
=2x−12x−1
b) (2x+1)2+(3x−1)2+2(2x+1)(3x−1)(
=(2x+1)2+2.(2x+1)(3x−1)+(3x−1)2
=[(2x+1)+(3x−1)]2
= (2x+1+3x−1)2
=(5x)2=25x2
a: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
b: \(=3x^2-6x-5x+5x^2-8x^2+24\)
=-11x+24
Lời giải:
a. Biểu thức này không có khả năng rút gọn. Khai triển ra cũng được nhưng không làm gọn được bạn nhé.
b. $=(2x)^2-3^2-4x^2=4x^2-9-4x^2=-9$
c. $=(3x)^2+2.3x+1^2-(x^2-1)=9x^2+6x+1-x^2+1=8x^2+6x+2$
ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)
a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)
\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)
\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)
\(=\dfrac{3x}{x-2}\)
b) Để A nguyên thì \(3x⋮x-2\)
\(\Leftrightarrow3x-6+6⋮x-2\)
mà \(3x-6⋮x-2\)
nên \(6⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(6\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{3;1;4;0;5;8;-4\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)
a: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
b) \(\left(3x^2-2x+1\right).\left(3x^2+2x+1\right)-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-\left(2x+1\right)^2-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-[\left(2x\right)^2+4x+1]-[\left(3x^2\right)^2+6x^2+1]\)=\(\left(2x\right)^2+4x+1+6x^2-1\)=\(4x^2+4x+6x^2\)=\(10x^2+4x\)
c)\(\left(x^2-5x+2\right)^2-2\left(x^2-5x+2\right)\left(5x-2\right)+\left(5x-2\right)^2\)=\([\left(x^2-5x+2\right)-\left(5x-2\right)]^2\)=\(x^2-5x+2-5x+2\)=\(x^2-10x+4\)=\(x^2-4x+2^2-6x\)=\(\left(x-2\right)^2-6x\)
(x+2)(x-2)-(x-3)(x+1)
=x^2-2x+2x-4-x^2-x-3x-3
=-4x-7