Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)
\(=7^3+2\cdot7^2=441\)
Bạn viết rõ hơn nhé :
\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
= \(\frac{x^4-xy^3}{2xy+y^2}.\frac{2x+y}{x^3+x^2y+xy^2}\)
= \(\frac{x.\left(x-y\right).\left(x^2+xy+y^2\right).\left(2x+y\right)}{y.\left(2x+y\right).x.\left(x^2+xy+y^2\right)}\)
= \(\frac{x-y}{y}\)
Chúc bạn học tốt !!!
Lời giải :
1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
Lời giải :
2. \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy...
1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)
\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)
\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)
\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
2) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=0-1\)
\(\Rightarrow x=-1\)
3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)
\(A=8\)
Vậy: biểu thức không phụ thuộc vào biến
1) \(\left(x+5\right)^3-x^3-125\)
\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)
\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)
\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)
\(=15x^2+75x\)
2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow24x+10=0\)
\(\Leftrightarrow24x=0-10\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)
\(\Rightarrow x=-\frac{5}{12}\)
3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)
\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)
\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)
\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)
\(=0\)
Vậy: biểu thức không phụ thuộc vào biến
1, ( x + 3 )( x- 4 ) + ( x - 4 ) mũ 2
=x^2+4x+3x-12+x^2-8x+16
=2x^2-x+4
3, x( x -14 ) - 10(x - 1) mũ 2
=x^2-14x-10(x^2-2x+1)
=x^2-14x-10x^2-20x+10
=-9x^2-34x+10
a: \(=25x^4-10x^3+5x^2\)
c: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
Bài 9:
a) Ta có: \(A=\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)
\(=4x^2+4xy+y^2-4x^2+y^2-xy-y^2\)
\(=3xy-y^2\)
\(=3\cdot\left(-2\right)\cdot3-3^2=-18-9=-27\)
b) Ta có: \(B=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)
\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)
\(=-13ab+2a+b-2\)
\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)
\(=\dfrac{31}{2}\)
Bài 7:
a) \(498^2=\left(500-2\right)^2=250000-2000+4=248004\)
b) \(93\cdot107=100^2-7^2=10000-49=9951\)
c) \(163^2+74\cdot163+37^2=\left(163+37\right)^2=200^2=40000\)
d) \(1995^2-1994\cdot1996=1995^2-1995^2+1=1\)
e) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-18^8+1=1\)
f) \(125^2-2\cdot125\cdot25+25^2=\left(125-25\right)^2=100^2=10000\)
A = ( x - 3 )3 - ( x + 1 )3 + 12( x - 1 )
= x3 - 9x2 + 27x - 27 - ( x3 + 3x2 + 3x + 1 ) + 12x - 12
= x3 - 9x2 + 27x - 27 - x3 - 3x2 - 3x - 1 + 12x - 12
= ( x3 - x3 ) + ( -9x2 - 3x2 ) + ( 27x - 3x + 12x ) + ( -27 - 1 - 12 )
= -12x2 + 36x - 40
Với x = -2/3
\(A=-12\times\left(-\frac{2}{3}\right)^2+36\times\left(-\frac{2}{3}\right)-40\)
\(=-12\times\frac{4}{9}-24-40\)
\(=-\frac{16}{3}-24-40=-\frac{208}{3}\)
\(=9^n-9^n-1\cdot3+1\cdot3^n=3^n-3\)