\(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4sin^2x}\) .

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 6 2020

\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)

\(=\sqrt{4-4sin^2x+sin^4x}+\sqrt{4-4cos^2x+cos^4x}\)

\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)

\(=2-sin^2x+2-cos^2x=4-\left(sin^2x+cos^2x\right)\)

\(=3\)

NV
26 tháng 4 2019

\(\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)

\(=\sqrt{sin^4x-4sin^2x+4}+\sqrt{cos^4x-4cos^2x+4}\)

\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)

\(=2-sin^2x+2-cos^2x\)

\(=4-\left(sin^2x+cos^2x\right)=3\)

18 tháng 6 2019

App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618

NV
30 tháng 10 2019

\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)

\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)

\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)

\(=sin^2x+cos^2x+2=3\)

b/

\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)

\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)

\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)

\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)

\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)

\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)

\(=-2+3=1\)

NV
19 tháng 4 2021

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

19 tháng 4 2021

Mình sửa lại đề rồi á

6 tháng 7 2021

\(\sqrt{sin^4x+cos^2x}+\sqrt{sin^2x+cos^4x}\)

\(=\sqrt{\left(1-cos^2x\right)^2+cos^2x}+\sqrt{sin^2x+cos^4x}\)

\(=\sqrt{1-cos^2x+cos^4x}+\sqrt{sin^2x+cos^4x}\)

\(=\sqrt{sin^2x+cos^4x}+\sqrt{sin^2x+cos^4x}\)

\(=2\sqrt{sin^2x+cos^4x}\)

NV
10 tháng 4 2019

\(\left(sin^4x+cos^4x+cos^2x.sin^2x\right)^2-sin^8x\)

\(=\left(sin^4x+cos^2x\left(cos^2x+sin^2x\right)\right)^2-sin^8x\)

\(=\left(sin^4x+cos^2x\right)^2-sin^8x=\left(sin^4x+cos^2x-sin^4x\right)\left(sin^4x+cos^2x+sin^4x\right)\)

\(=cos^2x\left(2sin^4x+cos^2x\right)=2sin^4x.cos^2x+cos^4x\)

Tương tự: \(\left(sin^4x+cos^4x+sin^2xcos^2x\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x\left(sin^2x+cos^2x\right)\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x-cos^4x\right)\left(cos^4x+sin^2x+cos^4x\right)\)

\(=sin^2x\left(2cos^4x+sin^2x\right)=2sin^2x.cos^4x+sin^4x\)

\(\Rightarrow M=2sin^2x.cos^4x+2sin^2x.cos^2x+sin^2x+cos^4x\)

\(M=2sin^2x.cos^2x\left(cos^2x+sin^2x\right)+sin^4x+cos^4x\)

\(M=2sin^2x.cos^2x+sin^4x+cos^4x\)

\(M=\left(sin^2x+cos^2x\right)^2=1\)

AH
Akai Haruma
Giáo viên
28 tháng 11 2019

\(A=2(\sin ^6x+\cos ^6x)-3(\sin ^4x+\cos ^4x)\)

\(=2(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)

\(=2(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)

\(=-(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x)=-(\sin ^2x+\cos ^2x)^2=-1^2=-1\)

là giá trị không phụ thuộc vào biến (đpcm)

-----------------------

\(B=\sin ^6x+\cos ^6x-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=-\sin ^4x-\sin ^2x\cos ^2x+\sin ^2x=-\sin ^2x(\sin ^2x+\cos ^2x)+\sin ^2x\)

\(=-\sin ^2x+\sin ^2x=0\)

là giá trị không phụ thuộc vào biến (đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 11 2019

\(C=(\sin ^4x+\cos ^4x-1)(\tan ^2x+\cot ^2x+2)=(\sin ^4x+\cos ^4x-1)(\frac{\sin ^2x}{\cos ^2x}+\frac{\cos ^2x}{\sin ^2x}+2)\)

\(=(\sin ^4x+\cos ^4x-1).\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=(\sin ^4x+\cos ^4x-1).\frac{(\sin ^2x+\cos ^2x)^2}{\sin ^2x\cos ^2x}\)

\(=(\sin ^4x+\cos ^4x-1).\frac{1}{\sin ^2x\cos ^2x}=\frac{(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}\)

\(=\frac{(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{1-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{-2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=-2\)

là giá trị không phụ thuộc vào biến $x$

--------------------

\(D=\frac{1}{\cos ^6x}-\tan ^6x-\frac{\tan ^2x}{\cos ^2x}=\frac{1}{\cos ^6x}-\frac{\sin ^6x}{\cos ^6x}-\frac{\sin ^2x}{\cos ^4x}\)

\(=\frac{1-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{(\sin ^2x+\cos ^2x)^3-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)

\(=\frac{\sin ^6x+\cos ^6x+3\sin ^2x\cos ^2x(\sin ^2x+\cos ^2x)-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)

\(=\frac{\cos ^6x+3\sin ^2x\cos ^2x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{\cos ^4x+2\sin ^2x}{\cos ^4x}\)

\(=1+\frac{2\sin ^2x}{\cos ^4x}\)

Giá trị biểu thức này vẫn phụ thuộc vào $x$. Bạn xem lại đề.